CSE 401 — Compilers

Lecture 16: x86 Lite for Compiler Writers (a
quick review)

Michael Ringenburg
Winter 2013

UW CSE 401 (Michael Ringenburg)

’ Reminders

* Project Part 2 due 11:59pm tonight

— In theory — but the closest the dropbox will enforce is
12:01am tomorrow morning. Hopefully you won’t
need those extra two minutes, though. ©

* Midterm on Friday.
— Review session tomorrow in Sections.

* Homework 1 and 2 solutions are available — pick
them up on your way out of class.
— Please dispose of these after the final.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Quick Shift-Reduce Conflict

Example
S ::=AList B
Alist ::= A AList | €
A:i=xX
B:i=xy
Stack Rest of input

$ X?7?..

A lookahead 1 parser only sees the
very next character

w

Winter 2013 UW CSE 401 (Michael Ringenburg)

Quick Shift-Reduce Conflict

Example
S ::= AList B

Problem: We are forced to decide AList ::= A AList | €
which path to take before we have A:i=xX
enough information, because one B:i=xy
path requires a shift and the other
a reduce.

If second symbol is x, we want to:

shift x, shift x, reduce x x > A
Stack Rest of input
$ X?7?..

If second symbol is y, we want to:
reduce € - AlList, shift x, shifty,
reduce x y = B, reduce AList B > S

Winter 2013 UW CSE 401 (Michael Ringenburg) 4

What If We Used
Left Recursion?

S ::=AList B

Alist ::= AListA | €
A:i=xX

B:i=xy

If second symbol is x, we want to:
reduce & > AList (we need build
our initial Alist that we append
additional A’s on to.

Stack Rest of input
$ X?7?..
If second symbol is y, we want to:
reduce € > AlList (we have an
empty AList)
Winter 2013 UW CSE 401 (Michael Ringenburg) 5

What If We Used
Left Recursion?

This works better: We don't have to S ::= AList B
reduce until we know which path we're Alist ::= AListA | €
on. A:i=xx

B:=x
Note: This type of problem can also Y
sometimes occur without empty
productions — try walking through an
example with AList ::= A AList | A
If second symbol is x, we want to:
shift x, shift x, reduce x x 2> A,

reduce AList A > A
Stack Rest of input

$AList X?7?.. .
If second symbol is y, we want to:

shift x, shift y, reduce xy - B,
reduce AList B > S

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

Agenda for the next
couple weeks

* Overview of x86 architecture
— Core 32-bit part only to start, not old cruft
— 64-bit x86-64 later for the project

* Then...
— Mapping source language constructs to x86
— Code generation for Minilava project

* Rest of the quarter...

— Survey of compiler optimizations, more
sophisticated code generation techniques

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

x86 Selected History

* 40 Years of x86
— Early 70s: 8008 and 8080 — 8 bit processors

— 1978: 8086 — 16-bit processor, segmentation — first to use x86
instruction set (designed to be easily translatable from 8008
and 8080 assembly)

— 1982: 80286 — memory protection

— 1985: 80386 — 32-bit architecture, “general-purpose” register
set, better virtual memory support, IA-32 ISA < Today’s class

— 1993: Pentium — SIMD support

— Late 90’s, early 00’s: Improved SIMD support, many other
improvements

— 2006: Core & Core 2 — Multicore, x86-64 64-bit ISA €A future
class

Winter 2013 UW CSE 401 (Michael Ringenburg) 8

’ And It’s
Backward-Compatible!

* 32-bit mode on current processors will run code
written for the 8086

— And 8008/8080 ISAs can be mechanically translated to run
on 8086...

* The Intel descriptions are bloated with modes and
flags that obscure the modern, fairly simple 32-bit
processor model

* Modern x86 processors have a RISC-like core

— Simple register-register and register-memory operations

— Simple x86 instructions preferred; complex CISC
instructions supported for compatibility

Winter 2013 UW CSE 401 (Michael Ringenburg) 9

’ x86 Assembler

* Two main assembler languages for x86
— Intel/Microsoft version — what’s in the documentation
— AT&T/GNU assembler — what we’re generating
* Use gcc =S to generate examples from C/C++ code
* These slides use Intel descriptions
— But slides for x86-64 (the target of your project) will
use GNU
* Information later on differences

— Main changes: dst,src reversed, data types in gnu
opcodes, various syntactic changes

Winter 2013 UW CSE 401 (Michael Ringenburg) 10

’ Intel ASM Statements

* Formatis
optlLabel: opcode operands ; comment
— optlabel is an optional label

— opcode and operands make up the assembly language
instruction

— Anything following a ‘;’ is a comment
* Language is very free-form

— Comments and labels may appear on separate lines by
themselves

Winter 2013 UW CSE 401 (Michael Ringenburg) 11

9 x86 Memory Model

« 8-bit bytes, byte addressable
* 16-bit words, 32-bit doublewords, and 64-bit
guadwords

— Data should almost always be aligned on “natural”
boundaries; huge performance penalty on
modern processors if it isn’t

* Little-endian — address of a 4-byte integer is
address of low-order byte

Winter 2013 UW CSE 401 (Michael Ringenburg) 12

Processor Registers

* 8 32-bit, mostly general purpose registers (in theory)

— Inreality, 6 or 7 are usable, depending on whether you use
ebp

— eax, ebx, ecx, edx, esi, edi, ebp (base pointer), esp (stack
pointer)
* Other registers, not directly addressable
— 32-bit eflags register
* Holds condition codes, processor state, etc.
— 32-bit “instruction pointer” eip
* Holds address of first byte of next instruction to execute

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

Processor Fetch-Execute
Cycle

* Basic conceptual cycle (same as most other
processors you’ve seen)
while (running) {
fetch instruction beginning at eip address
eip <- eip + instruction length
execute instruction

}

* Sequential execution unless a jump stores a new
“next instruction” address in eip

Winter 2013 UW CSE 401 (Michael Ringenburg) 14

’ Instruction Format

* Typical data manipulation instruction
— opcode dst,src

* Meaning is
— dst<-dstopsrc

* Normally, one operand is a register, the other is a
register, memory location, or integer constant

— Can’t have both operands in memory — can’t encode
two memory addresses in 1 instruction

Winter 2013 UW CSE 401 (Michael Ringenburg) 15

9 x86 Memory Stack

» Register esp points to the “top” of stack

— Dedicated for this use; don’t use otherwise —
some instructions expect this usage

— Stack grows down (push decrements esp, pop increments)

— Points to the last 32-bit doubleword pushed onto
the stack (not next “free” doubleword)

— Should always be doubleword aligned

* Can assume it will start out this way, and will stay
aligned unless your code does something bad

Winter 2013 UW CSE 401 (Michael Ringenburg) 16

’ Stack Instructions

push src
— esp <- esp —4; memory[esp] <- src
(e.g., push src onto the stack)
pop dst
— dst <- memory[esp]; esp <- esp +4
(e.g., pop top of stack into dst and logically remove it from
the stack)

* These are highly optimized and heavily used

— The x86 doesn’t have enough registers, so the stack is
frequently used for temporary space

Winter 2013 UW CSE 401 (Michael Ringenburg) 17

9 Stack Frames

* When a method is called, a stack frame is
traditionally allocated on the top of the stack to hold
its local variables

* Frame is popped on method return

* By convention, ebp (base pointer) points to a known
offset into the stack frame
— Local variables referenced relative to ebp

— (This is often optimized to use esp-relative addresses
instead. Frees up ebp, which can be helpful on a register-
starved machine; needs additional bookkeeping at compile
time, not too hard)

Winter 2013 UW CSE 401 (Michael Ringenburg) 18

Operand Address
Modes (1)

* These should cover most of what we’ll need

mov eax,17 ; store 17 in eax
mov eax,ecx ; copy ecx to eax
mov eax,[ebp+8] ; COpy memory to eax

mov [ebp-12],eax ; copy eax to memory

* References to object fields work similarly — put the
object’s memory address in a register and use that
address plus an offset

* Remember: can’t have two memory addresses in a
single instruction

Winter 2013 UW CSE 401 (Michael Ringenburg) 19

Operand Address
Modes (2)

* In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus a
constant displacement:

[basereg + indexreg*scale + constant]
— Scalecanbe 2,4, 8
* Main use for general form is for array subscripting

* Example: suppose:

— Array of 4-byte ints; address of the array A is in ecx;
subscript i is in eax

— Code to store ebx in A[i]
mov [ecx+eax*4],ebx

Winter 2013 UW CSE 401 (Michael Ringenburg) 20

Basic Data Movement and
Arithmetic Instructions

mov dst,src inc dst

— dst <-src — dst<-dst+1
add dst,src dec dst

— dst <- dst + src — dst<-dst-1
sub dst,src neg dst

— dst <- dst —src — dst<- -dst

(2’s complement
arithmetic negation)

Winter 2013 UW CSE 401 (Michael Ringenburg) 21

Integer Multiply and
Divide

imul dst,src idiv src
— dst<-dst*src — Divide edx:eax by src (edx:eax
— 32-bit product holds sign-extended 64-bit

value; cannot use other

— dst must be a register) o
registers for division)

imul dst,src,imm8
— dst <- dst*src*imm8
— imm8 — 8 bit constant

— eax <- quotient
— edx <- remainder
cdq

— edx:eax <- 64-bit sign
extended copy of eax

— Can be useful for some
subscript computations

Winter 2013 UW CSE 401 (Michael Ringenburg) 22

’ Bitwise Operations

and dst,src not dst

— dst <- dst & src — dst <- ~dst
(logical or 1's
complement)

or dst,src
— dst <- dst | src

xor dst,src
— dst <-dst A src

Winter 2013 UW CSE 401 (Michael Ringenburg) 23

’ Shifts and Rotates

shl dst,count sar dst,count
— dst shifted left count bits — dst <- dst shifted right
shr dst count count bits (sign bit fill)
— dst <- dst shifted right rol dst,count
count bits (O fill) — dst <- dst rotated left
count bits

ror dst,count

— dst <- dst rotated right
count bits

Winter 2013 UW CSE 401 (Michael Ringenburg) 24

’ Uses for Shifts and
Rotates
* Can often be used to optimize multiplication and
division by small constants

— If you're interested, look at “Hacker’s Delight” by Henry
Warren, A-W, 2003

* Lots of very cool bit fiddling and other algorithms

— But be careful — be sure semantics are OK

* There are additional instructions that shift and rotate
double words, use a calculated shift amount instead
of a constant, etc.

Winter 2013 UW CSE 401 (Michael Ringenburg) 25

’ Load Effective Address

* The unary & operator in C/C++
lea dst,src; dst <- address of src

— dst must be a register, src should be memory
address computation

— Computes any address arithmetic or indexing in
src, stores resulting address in dst

— Useful to capture addresses for pointers,
reference parameters, etc.

— Also useful for computing arithmetic expressions
that match rl+scale*r2+const

Winter 2013 UW CSE 401 (Michael Ringenburg) 26

’ Unconditional Jumps

jmp dst
— eip <- address of dst (label)

— Processor will execute that instruction at dst next

Winter 2013 UW CSE 401 (Michael Ringenburg) 27

9 Conditional Jumps

* Most arithmetic instructions set “condition code”
bits in eflags to record information about the result
(zero, non-zero, >0, etc.)

— True of add, sub, and, or; but not imul, idiv, lea

* Other instructions that set eflags
cmp dst,src ; compare dst to src

test dst,src ; calculate dst & src (logical
; and); doesn’t change either

Winter 2013 UW CSE 401 (Michael Ringenburg) 28

Conditional Jumps Following /e
Arithmetic Operations

jz label ; jump if result ==
jnz label ;jump if result =0
jg label ; jump if result >0
jng label ; jump if result <=0
jge label ; jump if result>=0
jngelabel ; jump if result <0
jl - label ; jump if result <0
jnl label ; jump if result>=0
jle label ; jump if result <=0
jnle label ; jump if result >0

* Obviously, the assembler is providing multiple opcode
mnemonics for several of the actual instructions

Winter 2013 UW CSE 401 (Michael Ringenburg) 29

9 Compare and Jump
Conditionally
* Want: compare two operands and jump if a
relationship holds between them
* Would like to do this

jimp.n.q ©pl,op2,label

but can’t, because 3-operand instructions
can’t be encoded in x86

(also true of most other machines for that matter)

Winter 2013 UW CSE 401 (Michael Ringenburg) 30

’ cmp and jcc

 Instead, use a 2-instruction sequence
cmp opl,op2

jcc label

where jcc is a conditional jump that is taken if
the result of the comparison matches the
condition cc

Winter 2013 UW CSE 401 (Michael Ringenburg) 31

Conditional Jumps Following /am

cmp
je label ; jump if opl == op2
jne label ; jump if opl != o0p2
jg label ; jump if opl > op2
jng label ; jump if opl <= op2
jge label ; jump if opl >= op2
jngelabel ; jump if opl < op2
jl label ; jump if opl < op2
jnl label ; jump if opl >= op2
jle label ; jump if opl <= op2
jnle label ; jump if opl > op2

* Again, the assembler is mapping more than one mnemonic to
some machine instructions

Winter 2013 UW CSE 401 (Michael Ringenburg) 32

’ Function Call and Return

* The x86 instruction set itself only provides for
transfer of control (jump) and return

* Stack is used to capture return address and recover it

* Everything else — parameter passing, stack frame
organization, register usage — is a matter of
convention and not defined by the hardware

Winter 2013 UW CSE 401 (Michael Ringenburg) 33

9 call and ret Instructions

call label
— Push address of next instruction and jump
— esp <- esp —4; memory[esp] <- eip
eip <- address of label
ret
— Pop address from top of stack and jump
— eip <- memory[esp]; esp<-esp +4
— WARNING! The word on the top of the stack had better be

an address, not some leftover data —i.e., make sure you've
popped off everything you pushed since the call

Winter 2013 UW CSE 401 (Michael Ringenburg) 34

’ enter and leave

* Complex instructions for languages with
nested procedures
— enter can be slow on current CPUs — best
avoided
* i.e., don’t use it in your project

— leave is equivalent to

mov esp,ebp

pop ebp

and is generated by many compilers. Fits in 1 byte,
saves space. Not clear if it’s any faster.

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

9 Win 32 C Function

Call Conventions

* Wintel code obeys the following conventions
for C programs

— Note: calling conventions normally designed very
early in the instruction set/ basic software design.
Hard (e.g., basically impossible) to change later.

— Note: Mac x86 has more restrictive stack frame
alignment requirements
e C++ augments these conventions to handle
the “this” pointer

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

Win32 C Register
Calling Conventions

* These registers must be restored to their original values before a
function returns, if they are altered during execution: esp, ebp, ebx,
esi, edi

— Sometimes called callee-saved registers
— Traditional: push/pop from stack to save/restore (aka spill/reload)

* A function may use the other registers (eax, ecx, edx) however it

wants, without having to save/restore them
— Sometimes called caller-saved, because the caller must save their
values if it wants them later.

* A 32-bit function result is expected to be in eax when the function
returns

* Generated code can get away with bending the rules, but watch it
when you call external C code (and you will need to do this for your
project).

— i.e., follow the rules when you do make these calls...

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

Call Site

 Caller is responsible for
— Pushing arguments on the stack from right to left
(allows implementation of varargs)
— Execute call instruction

— Pop arguments from stack after return

* For basic Minilava, this means add 4*(# arguments) to
esp after the return, since everything is either a 32-bit
variable (int, bool), or a reference (pointer), and there
are no varargs to keep track of

Winter 2013 UW CSE 401 (Michael Ringenburg) 38

’ Call Example

n =sumOf(17,42)

push 42 ; push args

push 17

call sumOf ; jJump & push addr
add esp,8 ; pop args

mov [ebp+offset],eax ; store result

Winter 2013 UW CSE 401 (Michael Ringenburg) 39

9 Callee

* Called function must do the following
— Save (spill) registers if necessary
— Allocate stack frame for local variables
— Execute function body
— Ensure result of non-void function is in eax

— Restore (reload) any required registers if
necessary

— Pop the stack frame
— Return to caller

Winter 2013 UW CSE 401 (Michael Ringenburg) 40

Function Prologue

* The code that needs to be executed before the
statements in the body of the function are executed
is referred to as the prologue

* For a Win32 function f, it looks like this:

f: push ebp ; save old frame pointer
mov ebp,esp ; new frame ptr is top of
; stack after arguments and
; return address are pushed
sub esp,”# bytes needed for stack frame”
; allocate stack frame

Winter 2013 UW CSE 401 (Michael Ringenburg) 41

’ Win32 Function Epilogue

* The epilogue is the code that is executed to obey a return
statement (or if execution “falls off” the bottom of a void
function)

* For a Win32 function, it looks like this:
mov eax,”function result”
; put result in eax if not already
; there (if non-void function)

mov esp,ebp ; restore esp to old value

; before stack frame allocated
pop ebp ; restore ebp to caller’s value
ret ; return to caller

Winter 2013 UW CSE 401 (Michael Ringenburg) 42

’ Example Function

e Source code

Arg2:y

int sumOf(int x, int y) { Argl: X
int a, int b; ebp/ Return address
a=x esp
b=a+y;
return b;

}

Winter 2013 UW CSE 401 (Michael Ringenburg) pe

’ Example Function

;; int sumOf(int x, int y) {

;; inta, intb; ARG

sumOf: Argl: x
push ebp ; prologue ebp Return address
mov ebp,esp /
sub esp, 8 P

no a=X;

mov eax,[ebp+8]
mov [ebp-4],eax

Winter 2013 UW CSE 401 (Michael Ringenburg) 44

’ Example Function

;; int sumOf(int x, int y) {

;; inta, intb; AR
sumOf: Argl: X
push eEp ; prologue ebp Return address
:,I(;V :Spp'gs'o esp —| Old frame ptr
poasx

mov eax,[ebp+8]
mov [ebp-4],eax

Winter 2013 UW CSE 401 (Michael Ringenburg) 45

’ Example Function

;; int sumOf(int x, int y) {

;; inta,intb; A2
sumOf: Argl: x
push ebp ; prologue ebp Return address

mov ebp,esp

sub esp, 8 esp \‘ Old frame ptr
\ a
b

o A=X;
mov eax,[ebp+8]
mov [ebp-4],eax

Winter 2013 UW CSE 401 (Michael Ringenburg) 46

’ Example Function

;; int sumOf(int x, int y) {

;; inta,intb; A
sumOf: Argl: x ~p.
push ebp ;prologue) Return address | ™

mov ebp,esp

sub esp, 8 esp Q L
a "

HECERS b
mov eax,[ebp+8]
mov [ebp-4],eax

Winter 2013 UW CSE 401 (Michael Ringenburg) 47

’ Example Function

sb=a+y; Arg2iy
mov eax,[ebp-4] Argl: x “,
add eax,[ebp+12] \,
mov [ebp-8],eax ebp Return address \

Old frame ptr

;; return b; esp P H{
mov eax,[ebp-8] a ':;/<~->
mov esp,ebp e
pop ebp b '1
ret

5

Winter 2013 UW CSE 401 (Michael Ringenburg) 48

’ Example Function

sb=aty; Arg2: y
mov eax,[ebp-4] Argl: X
add eax,[ebp+12]
mov [ebp-8],eax ebp Return address

. return by esp Old frame ptr
mov eax,[ebp-8] a
mov esp,ebp b
pop ebp eax=b
ret

H

Winter 2013 UW CSE 401 (Michael Ringenburg) 49

’ Example Function

sb=aty; Arg2: y
mov eax,[ebp-4] Argl: X
add eax,[ebp+12]
mov [ebp-8],eax ebp Return address

esp >‘| Old frame ptr

;; return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax =b
ret

i

Winter 2013 UW CSE 401 (Michael Ringenburg) 50

’ Example Function

sb=aty; Arg2: y

mov eax,[ebp-4] Argl: X

add eax,[ebp+12]

mov [ebp-8],eax ebi////z Return address
esp

;:return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax =b
ret

)

Winter 2013 UW CSE 401 (Michael Ringenburg) 51

’ Example Function

Arg2:y

sb=aty;

mov eax,[ebp-4] Argl: x
add eax,[ebp+12]
mov [ebp-8],eax ebp

esp

;;return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax=b
ret eip = Return address

i

Winter 2013 UW CSE 401 (Michael Ringenburg) 52

’ Example Function

Arg2:y

sb=aty;

mov eax,[ebp-4] Argl: x
add eax,[ebp+12]
mov [ebp-8],eax ebp

esp

;:return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax=>b
ret eip = Return address

)

Caller then pops arguments and stores return value from eax.

Winter 2013 UW CSE 401 (Michael Ringenburg) 53

’ Coming Attractions

* Now that we’ve got a basic idea of the x86
instruction set, we need to map language
constructs to x86

— Code Shape

* Then x86-64, gnu assembler, and Minilava
code generation and execution

Winter 2013 UW CSE 401 (Michael Ringenburg) 54

’ Midterm Questions?

Winter 2013 UW CSE 401 (Michael Ringenburg) 55

