CSE 401 — Compilers

Lecture 16: x86 Lite for Compiler Writers (a
quick review)

Michael Ringenburg
Winter 2013

UW CSE 401 (Michael Ringenburg)

’ Reminders

* Project Part 2 due 11:59pm tonight

— In theory — but the closest the dropbox will enforce is
12:01am tomorrow morning. Hopefully you won’t
need those extra two minutes, though. ©

* Midterm on Friday.
— Review session tomorrow in Sections.

* Homework 1 and 2 solutions are available — pick
them up on your way out of class.
— Please dispose of these after the final.
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Quick Shift-Reduce Conflict

Example
S ::=AList B
Alist ::= A AList | €
A:i=xX
B:i=xy
Stack Rest of input

$ X?7?..

A lookahead 1 parser only sees the
very next character

w
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Quick Shift-Reduce Conflict

Example
S ::= AList B

Problem: We are forced to decide AList ::= A AList | €
which path to take before we have A:i=xX
enough information, because one B:i=xy
path requires a shift and the other
a reduce.

If second symbol is x, we want to:

shift x, shift x, reduce x x > A
Stack Rest of input
$ X?7?..

If second symbol is y, we want to:
reduce € - AlList, shift x, shifty,
reduce x y = B, reduce AList B > S

Winter 2013 UW CSE 401 (Michael Ringenburg) 4




What If We Used
Left Recursion?

S ::=AList B

Alist ::= AListA | €
A:i=xX

B:i=xy

If second symbol is x, we want to:
reduce & > AList (we need build
our initial Alist that we append
additional A’s on to.

Stack Rest of input
$ X?7?..
If second symbol is y, we want to:
reduce € > AlList (we have an
empty AList)
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What If We Used
Left Recursion?

This works better: We don't have to S ::= AList B
reduce until we know which path we're Alist ::= AListA | €
on. A:i=xx

B:=x
Note: This type of problem can also Y
sometimes occur without empty
productions — try walking through an
example with AList ::= A AList | A
If second symbol is x, we want to:
shift x, shift x, reduce x x 2> A,

reduce AList A > A
Stack Rest of input

$AList X?7?.. .
If second symbol is y, we want to:

shift x, shift y, reduce xy - B,
reduce AList B > S

Winter 2013 UW CSE 401 (Michael Ringenburg) 6




Agenda for the next
couple weeks

* Overview of x86 architecture
— Core 32-bit part only to start, not old cruft
— 64-bit x86-64 later for the project

* Then...
— Mapping source language constructs to x86
— Code generation for Minilava project

* Rest of the quarter...

— Survey of compiler optimizations, more
sophisticated code generation techniques
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x86 Selected History

* 40 Years of x86
— Early 70s: 8008 and 8080 — 8 bit processors

— 1978: 8086 — 16-bit processor, segmentation — first to use x86
instruction set (designed to be easily translatable from 8008
and 8080 assembly)

— 1982: 80286 — memory protection

— 1985: 80386 — 32-bit architecture, “general-purpose” register
set, better virtual memory support, IA-32 ISA < Today’s class

— 1993: Pentium — SIMD support

— Late 90’s, early 00’s: Improved SIMD support, many other
improvements

— 2006: Core & Core 2 — Multicore, x86-64 64-bit ISA €A future
class
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’ And It’s
Backward-Compatible!

* 32-bit mode on current processors will run code
written for the 8086

— And 8008/8080 ISAs can be mechanically translated to run
on 8086...

* The Intel descriptions are bloated with modes and
flags that obscure the modern, fairly simple 32-bit
processor model

* Modern x86 processors have a RISC-like core

— Simple register-register and register-memory operations

— Simple x86 instructions preferred; complex CISC
instructions supported for compatibility
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’ x86 Assembler

* Two main assembler languages for x86
— Intel/Microsoft version — what’s in the documentation
— AT&T/GNU assembler — what we’re generating
* Use gcc =S to generate examples from C/C++ code
* These slides use Intel descriptions
— But slides for x86-64 (the target of your project) will
use GNU
* Information later on differences

— Main changes: dst,src reversed, data types in gnu
opcodes, various syntactic changes
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’ Intel ASM Statements

* Formatis
optlLabel: opcode operands ; comment
— optlabel is an optional label

— opcode and operands make up the assembly language
instruction

— Anything following a ‘;’ is a comment
* Language is very free-form

— Comments and labels may appear on separate lines by
themselves
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9 x86 Memory Model

« 8-bit bytes, byte addressable
* 16-bit words, 32-bit doublewords, and 64-bit
guadwords

— Data should almost always be aligned on “natural”
boundaries; huge performance penalty on
modern processors if it isn’t

* Little-endian — address of a 4-byte integer is
address of low-order byte
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Processor Registers

* 8 32-bit, mostly general purpose registers (in theory)

— Inreality, 6 or 7 are usable, depending on whether you use
ebp

— eax, ebx, ecx, edx, esi, edi, ebp (base pointer), esp (stack
pointer)
* Other registers, not directly addressable
— 32-bit eflags register
* Holds condition codes, processor state, etc.
— 32-bit “instruction pointer” eip
* Holds address of first byte of next instruction to execute

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

Processor Fetch-Execute
Cycle

* Basic conceptual cycle (same as most other
processors you’ve seen)
while (running) {
fetch instruction beginning at eip address
eip <- eip + instruction length
execute instruction

}

* Sequential execution unless a jump stores a new
“next instruction” address in eip
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’ Instruction Format

* Typical data manipulation instruction
— opcode dst,src

* Meaning is
— dst<-dstopsrc

* Normally, one operand is a register, the other is a
register, memory location, or integer constant

— Can’t have both operands in memory — can’t encode
two memory addresses in 1 instruction
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9 x86 Memory Stack

» Register esp points to the “top” of stack

— Dedicated for this use; don’t use otherwise —
some instructions expect this usage

— Stack grows down (push decrements esp, pop increments)

— Points to the last 32-bit doubleword pushed onto
the stack (not next “free” doubleword)

— Should always be doubleword aligned

* Can assume it will start out this way, and will stay
aligned unless your code does something bad
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’ Stack Instructions

push src
— esp <- esp —4; memory[esp] <- src
(e.g., push src onto the stack)
pop dst
— dst <- memory[esp]; esp <- esp +4
(e.g., pop top of stack into dst and logically remove it from
the stack)

* These are highly optimized and heavily used

— The x86 doesn’t have enough registers, so the stack is
frequently used for temporary space
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9 Stack Frames

* When a method is called, a stack frame is
traditionally allocated on the top of the stack to hold
its local variables

* Frame is popped on method return

* By convention, ebp (base pointer) points to a known
offset into the stack frame
— Local variables referenced relative to ebp

— (This is often optimized to use esp-relative addresses
instead. Frees up ebp, which can be helpful on a register-
starved machine; needs additional bookkeeping at compile
time, not too hard)
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Operand Address
Modes (1)

* These should cover most of what we’ll need

mov eax,17 ; store 17 in eax
mov eax,ecx ; copy ecx to eax
mov eax,[ebp+8] ; COpy memory to eax

mov [ebp-12],eax ; copy eax to memory

* References to object fields work similarly — put the
object’s memory address in a register and use that
address plus an offset

* Remember: can’t have two memory addresses in a
single instruction
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Operand Address
Modes (2)

* In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus a
constant displacement:

[basereg + indexreg*scale + constant]
— Scalecanbe 2,4, 8
* Main use for general form is for array subscripting

* Example: suppose:

— Array of 4-byte ints; address of the array A is in ecx;
subscript i is in eax

— Code to store ebx in A[i]
mov [ecx+eax*4],ebx

Winter 2013 UW CSE 401 (Michael Ringenburg) 20




Basic Data Movement and
Arithmetic Instructions

mov dst,src inc dst

— dst <-src — dst<-dst+1
add dst,src dec dst

— dst <- dst + src — dst<-dst-1
sub dst,src neg dst

— dst <- dst —src — dst<- -dst

(2’s complement
arithmetic negation)

Winter 2013 UW CSE 401 (Michael Ringenburg) 21

Integer Multiply and
Divide

imul dst,src idiv src
— dst<-dst*src — Divide edx:eax by src (edx:eax
— 32-bit product holds sign-extended 64-bit

value; cannot use other

— dst must be a register ) o
registers for division)

imul dst,src,imm8
— dst <- dst*src*imm8
— imm8 — 8 bit constant

— eax <- quotient
— edx <- remainder
cdq

— edx:eax <- 64-bit sign
extended copy of eax

— Can be useful for some
subscript computations
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’ Bitwise Operations

and dst,src not dst

— dst <- dst & src — dst <- ~dst
(logical or 1's
complement)

or dst,src
— dst <- dst | src

xor dst,src
— dst <-dst A src
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’ Shifts and Rotates

shl dst,count sar dst,count
— dst shifted left count bits — dst <- dst shifted right
shr dst count count bits (sign bit fill)
— dst <- dst shifted right rol dst,count
count bits (O fill) — dst <- dst rotated left
count bits

ror dst,count

— dst <- dst rotated right
count bits
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’ Uses for Shifts and
Rotates
* Can often be used to optimize multiplication and
division by small constants

— If you're interested, look at “Hacker’s Delight” by Henry
Warren, A-W, 2003

* Lots of very cool bit fiddling and other algorithms

— But be careful — be sure semantics are OK

* There are additional instructions that shift and rotate
double words, use a calculated shift amount instead
of a constant, etc.
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’ Load Effective Address

* The unary & operator in C/C++
lea dst,src; dst <- address of src

— dst must be a register, src should be memory
address computation

— Computes any address arithmetic or indexing in
src, stores resulting address in dst

— Useful to capture addresses for pointers,
reference parameters, etc.

— Also useful for computing arithmetic expressions
that match rl+scale*r2+const
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’ Unconditional Jumps

jmp dst
— eip <- address of dst (label)

— Processor will execute that instruction at dst next
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9 Conditional Jumps

* Most arithmetic instructions set “condition code”
bits in eflags to record information about the result
(zero, non-zero, >0, etc.)

— True of add, sub, and, or; but not imul, idiv, lea

* Other instructions that set eflags
cmp dst,src  ; compare dst to src

test dst,src  ; calculate dst & src (logical
; and); doesn’t change either
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Conditional Jumps Following /e
Arithmetic Operations

jz label ; jump if result ==
jnz label ;jump if result =0
jg label ; jump if result >0
jng label ; jump if result <=0
jge label ; jump if result>=0
jngelabel ; jump if result <0
jl - label ; jump if result <0
jnl label ; jump if result>=0
jle label ; jump if result <=0
jnle label ; jump if result >0

* Obviously, the assembler is providing multiple opcode
mnemonics for several of the actual instructions
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9 Compare and Jump
Conditionally
* Want: compare two operands and jump if a
relationship holds between them
* Would like to do this

jimp.n.q ©pl,op2,label

but can’t, because 3-operand instructions
can’t be encoded in x86

(also true of most other machines for that matter)
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’ cmp and jcc

 Instead, use a 2-instruction sequence
cmp opl,op2

jcc label

where jcc is a conditional jump that is taken if
the result of the comparison matches the
condition cc
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Conditional Jumps Following /am

cmp
je label ; jump if opl == op2
jne label ; jump if opl != o0p2
jg label ; jump if opl > op2
jng label ; jump if opl <= op2
jge label ; jump if opl >= op2
jngelabel ; jump if opl < op2
jl  label ; jump if opl < op2
jnl label ; jump if opl >= op2
jle label ; jump if opl <= op2
jnle label ; jump if opl > op2

* Again, the assembler is mapping more than one mnemonic to
some machine instructions
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’ Function Call and Return

* The x86 instruction set itself only provides for
transfer of control (jump) and return

* Stack is used to capture return address and recover it

* Everything else — parameter passing, stack frame
organization, register usage — is a matter of
convention and not defined by the hardware
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9 call and ret Instructions

call label
— Push address of next instruction and jump
— esp <- esp —4; memory[esp] <- eip
eip <- address of label
ret
— Pop address from top of stack and jump
— eip <- memory[esp]; esp<-esp +4
— WARNING! The word on the top of the stack had better be

an address, not some leftover data —i.e., make sure you've
popped off everything you pushed since the call
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’ enter and leave

* Complex instructions for languages with
nested procedures
— enter can be slow on current CPUs — best
avoided
* i.e., don’t use it in your project

— leave is equivalent to

mov esp,ebp

pop ebp

and is generated by many compilers. Fits in 1 byte,
saves space. Not clear if it’s any faster.
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9 Win 32 C Function

Call Conventions

* Wintel code obeys the following conventions
for C programs

— Note: calling conventions normally designed very
early in the instruction set/ basic software design.
Hard (e.g., basically impossible) to change later.

— Note: Mac x86 has more restrictive stack frame
alignment requirements
e C++ augments these conventions to handle
the “this” pointer
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Win32 C Register
Calling Conventions

* These registers must be restored to their original values before a
function returns, if they are altered during execution: esp, ebp, ebx,
esi, edi

— Sometimes called callee-saved registers
— Traditional: push/pop from stack to save/restore (aka spill/reload)

* A function may use the other registers (eax, ecx, edx) however it

wants, without having to save/restore them
— Sometimes called caller-saved, because the caller must save their
values if it wants them later.

* A 32-bit function result is expected to be in eax when the function
returns

* Generated code can get away with bending the rules, but watch it
when you call external C code (and you will need to do this for your
project).

— i.e., follow the rules when you do make these calls...
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Call Site

 Caller is responsible for
— Pushing arguments on the stack from right to left
(allows implementation of varargs)
— Execute call instruction

— Pop arguments from stack after return

* For basic Minilava, this means add 4*(# arguments) to
esp after the return, since everything is either a 32-bit
variable (int, bool), or a reference (pointer), and there
are no varargs to keep track of
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’ Call Example

n =sumOf(17,42)

push 42 ; push args

push 17

call  sumOf ; jJump & push addr
add esp,8 ; pop args

mov [ebp+offset ],eax ; store result
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9 Callee

* Called function must do the following
— Save (spill) registers if necessary
— Allocate stack frame for local variables
— Execute function body
— Ensure result of non-void function is in eax

— Restore (reload) any required registers if
necessary

— Pop the stack frame
— Return to caller
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Function Prologue

* The code that needs to be executed before the
statements in the body of the function are executed
is referred to as the prologue

* For a Win32 function f, it looks like this:

f: push ebp ; save old frame pointer
mov ebp,esp ; new frame ptr is top of
; stack after arguments and
; return address are pushed
sub  esp,”# bytes needed for stack frame”
; allocate stack frame
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’ Win32 Function Epilogue

* The epilogue is the code that is executed to obey a return
statement (or if execution “falls off” the bottom of a void
function)

* For a Win32 function, it looks like this:
mov eax,”function result”
; put result in eax if not already
; there (if non-void function)

mov esp,ebp ; restore esp to old value

; before stack frame allocated
pop ebp ; restore ebp to caller’s value
ret ; return to caller
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’ Example Function

e Source code

Arg2:y

int sumOf(int x, int y) { Argl: X
int a, int b; ebp/ Return address
a=x esp
b=a+y;
return b;

}
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’ Example Function

;; int sumOf(int x, int y) {

;; inta, intb; ARG

sumOf: Argl: x
push ebp  ; prologue ebp Return address
mov ebp,esp /
sub esp, 8 P

no a=X;

mov eax,[ebp+8]
mov [ebp-4],eax
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’ Example Function

;; int sumOf(int x, int y) {

;; inta, intb; AR
sumOf: Argl: X
push eEp ; prologue ebp Return address
:,I(;V :Spp'gs'o esp —| Old frame ptr
poasx

mov eax,[ebp+8]
mov [ebp-4],eax
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’ Example Function

;; int sumOf(int x, int y) {

;; inta,intb; A2
sumOf: Argl: x
push ebp  ; prologue ebp Return address

mov ebp,esp

sub esp, 8 esp \‘ Old frame ptr
\ a
b

o A=X;
mov eax,[ebp+8]
mov [ebp-4],eax
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’ Example Function

;; int sumOf(int x, int y) {

;; inta,intb; A
sumOf: Argl: x  ~p.
push ebp  ;prologue ) Return address | ™

mov ebp,esp

sub esp, 8 esp Q L
a "

HECERS b
mov eax,[ebp+8]
mov [ebp-4],eax
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’ Example Function

sb=a+y; Arg2iy
mov eax,[ebp-4] Argl: x “,
add eax,[ebp+12] \,
mov [ebp-8],eax ebp Return address \

Old frame ptr

;; return b; esp P H{
mov eax,[ebp-8] a ':;/<~->
mov esp,ebp e
pop ebp b '1
ret

5
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’ Example Function

sb=aty; Arg2: y
mov eax,[ebp-4] Argl: X
add eax,[ebp+12]
mov [ebp-8],eax ebp Return address

. return by esp Old frame ptr
mov eax,[ebp-8] a
mov esp,ebp b
pop ebp eax=b
ret

H
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’ Example Function

sb=aty; Arg2: y
mov eax,[ebp-4] Argl: X
add eax,[ebp+12]
mov [ebp-8],eax ebp Return address

esp >‘| Old frame ptr

;; return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax =b
ret

i
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’ Example Function

sb=aty; Arg2: y

mov eax,[ebp-4] Argl: X

add eax,[ebp+12]

mov [ebp-8],eax ebi////z Return address
esp

;:return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax =b
ret

)
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’ Example Function

Arg2:y

sb=aty;

mov eax,[ebp-4] Argl: x
add eax,[ebp+12]
mov [ebp-8],eax ebp

esp

;;return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax=b
ret eip = Return address

i
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’ Example Function

Arg2:y

sb=aty;

mov eax,[ebp-4] Argl: x
add eax,[ebp+12]
mov [ebp-8],eax ebp

esp

;:return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp eax=>b
ret eip = Return address

)

Caller then pops arguments and stores return value from eax.
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’ Coming Attractions

* Now that we’ve got a basic idea of the x86
instruction set, we need to map language
constructs to x86

— Code Shape

* Then x86-64, gnu assembler, and Minilava
code generation and execution
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’ Midterm Questions?
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