Winter 2013

CSE 401 - Compilers

Lecture 14: Semantic Analysis, Part I
Michael Ringenburg
Winter 2013

UW CSE 401 (Michael Ringenburg)

>

Agenda

e Attribute Grammars

— Review what we discussed at the end of class
Wednesday

— Go over a couple examples

* Symbol tables
— For MiniJava

— For real languages

* Next lecture: type checking

Winter 2013

UW CSE 401 (Michael Ringenburg)

’ Review: Attributes

* An attribute grammar associates
o" H V24 M .
attributes” (data) with nodes in the syntax tree.
* Given a production X ::=Y, Y, .. Y,
— A synthesized attribute X.a is a function of some
combination of attributes of Y,'s (bottom up)
* E.g., the val attribute from last time
— An inherited attribute Y,.b is a function of some
combination of attributes X.a and other Y,.c (top
down)
* Often restricted a bit: only Y’s to the left can be used.
* E.g., a “type environment”

Winter 2013 UW CSE 401 (Michael Ringenburg)

w

’ Review:
Attribute Equations

* For each production we give a set of equations
relating attribute values of the syntax tree node
and its children

— Example:

plus.val = expl.val + exp2.val
» Attribution (aka, evaluation) means finding a
solution that satisfies all of the equations in the
tree

Winter 2013 UW CSE 401 (Michael Ringenburg) 4

’ Attribute Example:
Execution Cost

* Consider the simple grammar:
Block :: = Block Assign | Assign
Assign ::=id = Expr;
Expr ::= Expr + Term | Expr —Term | Term
Term :: =Term * Factor | Term / Factor | Factor
Factor ::= (Expr) | INTEGER_LITERAL | id

* Goal: design an attribute grammar that
approximates the execution cost of programs
written in this language.

* The attribute X.cost will estimate the cost of
computing the subtree rooted at node X.

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

’ Block Attribute Equations

* Intuition: The cost of a block is the sum of the
cost of the statements that comprise it.
* Block, ::= Block, Assign
— Block;.cost = Block,.cost + Assign.cost
— Recursive case
* Block ::= Assign
— Block.cost = Assign.cost
— Base case

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

’ Assign Attribute Equation

* Intuition: The cost of an assignment is the cost
of computing the right-hand side, plus the
cost of a store (to write the result to the
variable in memory).

* Assign ::=id = Expr;

— Assign.cost = Cost(store) + Expr.cost

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

’ Expression Attribute
Equations

* Intuition: Cost of an operation is the cost of
computing its operands, plus the cost of the
actual operation (add or subtract instruction).

* Expr; ;= Expr, + Term

— Expr;.cost = Cost(add) + Expr,.cost + Term.cost
* Expr, ::= Expr, - Term

— Expr,.cost = Cost(subtract) + Expr,.cost + Term.cost
* Expr::=Term

— Expr.cost = Term.cost

Winter 2013 UW CSE 401 (Michael Ringenburg) 8

’ Term Attribute Equations

* Intuition: Cost of an operation is the cost of
computing its operands, plus the cost of the
actual operation (multiply or divide).

* Term, ::= Term, * Factor

— Term,.cost = Cost(mult) + Term,.cost + Factor.cost
* Term, ::= Term, / Factor

— Term,.cost = Cost(divide) + Term,.cost + Factor.cost

* Term ::= Factor
— Term.cost = Factor.cost

Winter 2013 UW CSE 401 (Michael Ringenburg) 9

’ Factor Attribute Equations

* Factor ::= (Expr)

— Factor.cost ::= Expr.cost

— The cost of the parenthesized expression.
* Factor ::=id

— Factor.cost ::= Cost(load)

— Reading a variable has the cost of a load
* Factor ::= INTEGER_LITERAL

— Factor.cost ::= Cost(loadimm)

— The cost of a load-immediate style instruction (place a
constant into a register).

Winter 2013 UW CSE 401 (Michael Ringenburg) 10

Example: Cost Attribution

X=y+1l,y=x*3;

’ Observation

* Ifwehady=x+x+1;z=x; areal compiler

wouldn’t load x three times. It would load it once

and store it in a register.

* How can we track this, since attribute equations
are defined locally (based on a single
production)?

* Solution is to add “copy” rules to the grammar,
but this can blow up grammar, and is one the
reasons attribute grammars aren’t used much in
practice.

— See “Improving the Execution-Cost Estimator” in 4.3.3

of Cooper & Torczon.

Winter 2013 UW CSE 401 (Michael Ringenburg)

12

More Realistic Example of
Attribute Rules

* Suppose we have the following grammar for a trivial
language

program ::= declList stmt

declList ::= declList decl | decl

decl ::=intid;

stmt ::=exp=exp;

exp ::=id | exp + exp | INTEGER_LITERAL

* Programs are a list of declarations, followed by a single
assighment statement

* Let’s give suitable attributes for basic type and Ivalue/
rvalue checking, and constant folding

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

More Realistic Example of
Attribute Rules

* Attributes of nodes
— env (type environment) stores the types of all declared
variables; synthesized by declarations, inherited by the
statement
* Each entry maps a name to its type
— envPre (for declarations) — Used to build up the environment
* Represents the environment prior to the declaration.

* E.g, “intx; inty;”. The envPre of “int y” will map x to an int. The env
of “int y” will map x to int and y to int.

— type (for expressions); synthesized from children (and
possible env lookup)

— kind: var (assignable) or val (not assignable); synthesized

— value (for expressions): UNK (unknown) or an Integer,
represents computed constant value; synthesized

Winter 2013 UW CSE 401 (Michael Ringenburg) 14

’Attributes for Declarations

* decl ::=intid;
— decl.env = decl.preEnv U {(id, int)}

— Intuition: add (id, int) mapping to an environment
containing mappings for previous declarations

* Example: Attribution for int vy, given that we
previously saw int x
— Saw int x earlier, so assume decl.preEnv = {(x, int)}
—decl::=int y;
— decl.env = decl.preEnv U {(y, int)} =
{(x, int)} U {(y, int)} =
{(x, int), (y, int)}

Winter 2013 UW CSE 401 (Michael Ringenburg) 15

’Attributes for Declarations

* decllist, ::= declList, decl
— decl.preEnv = decllList,.env
— declList,.env = decl.env
— Intuition: declList,.env contains all of the
previously seen mappings, so use it as the pre-
environment for our new declaration. The
environment for the combined list (list 1) will be

the result of adding the mapping for decl to the
mappings of the prefix list (list 2).

Winter 2013 UW CSE 401 (Michael Ringenburg) 16

’Attributes for Declarations |

e declList ::= decl
— decl.preEnv ={}
— declList.env = decl.env

— Intuition: For the first element in our declaration
list, we can start with an empty environment,
because we won’t have seen any declarations yet.
(True here, but probably not in a real language.)

Winter 2013 UW CSE 401 (Michael Ringenburg) 17

Example Declaration List

int x; int y; int z;

» declList ::= decl
» decl.preEnv = { }
» declList.env = decl.env

* declList, ::= declList, decl
+ decl.preEnv = declList,.env
* declList,.env = decl.env

e decl ::=intid;
» decl.env = decl.preEnv U {(id, int)}

’ Attributes for Program

* program ::= declList stmt
— stmt.env = declList.env

— Intuition: We want to typecheck our statement given the
type environment synthesized by our declaration list.

* Example: If program was
int a; int b; b = a + 1;

We would typecheck the assignment statement
with the environment {(a, int), (b, int)}

Winter 2013 UW CSE 401 (Michael Ringenburg) 19

’ Attributes for Constants

* exp ::= INTEGER_LITERAL
— exp.kind = val
— exp.type =int
— exp.value = INTEGER_LITERAL

— Intuition: Aninteger constant (literal) clearly has
type int, and explicit value. You can’t assign to it
(5 =xis not legal), so it is a value (val) not a
variable (var).

Winter 2013 UW CSE 401 (Michael Ringenburg) 20

Attributes for
|dentifier Expressions

* exp:=id
— id.type = exp.env.lookup(id)
* If this lookup fails, issue an undeclared variable error.
exp.type = id.type
exp.kind = var
exp.value = UNK

Intuition: We look up the identifier’s type in the
environment, and use that as the expression’s type. Ifit
doesn’t exist in the environment, it must not have been
declared, so it’s an error. Since it is a variable, it is
assignable and has unknown value.

— Example: Typechecking a with environment {(a,int)} gives
type int. Typechecking b with the same environment gives
an error.

Winter 2013 UW CSE 401 (Michael Ringenburg) 21

’ Attributes for Addition

* exp :=exp; +exp,
— exp;.env = exp,.env = exp.env

— error if exp,.type != exp,.type (or if not compatible if using more
complex rules)

— exp.type = exp,.type (or converted type if more complex rules)

— exp.kind = val

— exp.value = (exp,.value == UNK | | exp,.value == UNK) ?
UNK : exp,.value + exp,.value

— Intuition: Typecheck operands with same environment as
operation. Verify that types are compatible, and set result
type appropriately. Not assignable, so set kind to val.
Compute value if both operands have constant value.

Winter 2013 UW CSE 401 (Michael Ringenburg) 22

’ Attribute Rules for
Assignment
* stmt :i= exp, = exp,,
— exp,.env = stmt.env

— exp,.env = stmt.env

— Error if exp2.type is not assignment compatible
with expl.type

— Error if exp,.kind is not var (can’t be val)

— Intuition: Verify that left hand side is assignable,
and that types of left and right hand sides are
compatible.

Winter 2013 UW CSE 401 (Michael Ringenburg) 23

Example

intx; inty;intz; x+1=a+(1+2);

Example

intx; inty;intz; x=a+ (1 +2);

Example

intx;inty;intz;x=y+(1+2);

Extensions

* This can be extended to handle sequences of
statements, and multiple declaration lists

— Full environment is passed down to all statements and
expressions
— Declaration lists extended to have a pre-environment,
which they pass to the first declaration via
* declList ::= decl
—decl.preEnv = declList.preEnv
* declList, :: = declList, decl

— declList,.preEnv = declList,.preEnv

Winter 2013 UW CSE 401 (Michael Ringenburg) 27

Observations

* These are equational computations
* This can be automated (if equations are non-circular)

* But implementation problems

— Non-local computation: Attribute equations can only refer to
values associated with symbols that appear in a single
production rule.

* If you need non-local values, need to add special rules to the
grammar to copy them. Can make grammar very large.

— Can’t afford to literally pass around copies of large, aggregate
structures like environments.

— Use of production rules binds attributes to the parse tree rather
than the (typically smaller, and more useful) AST. Can work
around this (use “AST grammar”), but results in more complex
attribute rules.

Winter 2013 UW CSE 401 (Michael Ringenburg) 28

’ In Practice

* Attribute grammars give us a good way of
thinking about how to structure semantic checks
— What to verify or track at each node

* Symbol tables will hold environment information

* Add fields to AST nodes to refer to appropriate
attributes (symbol table entries for identifiers,
types for expressions, etc.)

— Put in appropriate places in AST class inheritance tree
(most statements don’t need types, for example)

Winter 2013 UW CSE 401 (Michael Ringenburg) 29

’ Symbol Tables

* Map identifiers to

<type, kind, location, other properties>
* QOperations

— Lookup(id) => information

— Enter(id, information)

— Open/close scopes
* Build & use during semantics pass

— Build first from declarations

— Then use to check semantic rules

* Use (and add to) during later phases as well

Winter 2013 UW CSE 401 (Michael Ringenburg) 30

Aside:
Implementing Symbol Tables"

* Big topic in classical compiler courses: implementing a
hashed symbol table

* These days: use the collection classes that are provided
with the standard language libraries (Java, C#, C++, ML,
Haskell, etc.)

— Then tune & optimize if it really matters

* In production compilers, it really matters
— Uptoa point ...
» (if you can read this, I'm impressed).

* Java:
— Map (HashMap) will handle most cases
— List (ArrayList) for ordered lists (parameters, etc.)

Winter 2013 UW CSE 401 (Michael Ringenburg) 31

Symbol Tables for
MiniJava

* Consider this a general outline, based on
recommendations courtesy from Hal Perkins
(whose given this project many times).

— Feel free to modify to fit your needs

* A mix of global and local tables.

* First Global — Per Program Information
— Single global table to map class names to per-class
symbol tables
* Created in a pass over class definitions in AST

* Used in remaining parts of compiler to check class types and
their field/method names and extract information about
them

Winter 2013 UW CSE 401 (Michael Ringenburg) 32

Symbol Tables for
MiniJava

e Other Globals — Per Class Information

— 1 Symbol table for each class

* 1 entry per method/field declared in the class

— Contents: type information, public/private/protected,
parameter types (for methods), storage locations (filled in
later), etc.

— In full Java, need multiple symbol tables (or more
complex symbol table) per class

* Ex.: Java allows the same identifier to name both a
method and a field in a class — multiple namespaces

Winter 2013 UW CSE 401 (Michael Ringenburg) 33

Symbol Tables for
MiniJava

* Global (cont)

— All global tables persist throughout the
compilation

* And beyond in a real compiler...

— (e.g., symbolic information in Java .class or MSIL files, link-
time optimization information in gcc)

— Cray compilers generate “program libraries”, which contain
full symbols tables and full post-front-end IR for every
function in every module.

» Can use this for interprocedural optimization across
source files (modules). Traditionally, each module
compiled and optimized individually into a .o/.class file
(containing object- or byte-code).

Winter 2013 UW CSE 401 (Michael Ringenburg) 34

’ Symbol Tables for
MiniJava
* 1 local symbol table for each method

— 1 entry for each local variable or parameter
* Contents: type information, storage locations (filled in
later), etc.
— Needed only while compiling the method; in a
single pass compiler, you could discard when done
with the method

* But if type checking and code gen, etc. are done in
separate passes, this table needs to persist until we're
done with it

* Your project implementation will likely be multipass

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

’ Beyond Minilava

* What we aren’t dealing with: nested scopes

— Inner classes

— Nested scopes in methods — reuse of identifiers in parallel
or inner scopes; nested functions
* Conceptual idea: keep a stack of symbol tables
(pointers to tables, really)
— Push a new symbol table when we enter an inner scope

— Look for identifier in inner scope; if not found look at the
element above it in the stack, recursively.

— Pop symbol table when we exit scope

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

Engineering Issues

* In multipass compilers, symbol table info needs to
persist after analysis of inner scopes for use on later
passes
— So popping can’t “really” delete the scope’s table.

— Keep around with pointer to parent scope. Effectively
creates an upside tree of scopes (nodes have parent
pointers rather than children pointers). Statements have
pointers to their innermost scope.

* May want to retain O(1) lookup

— Not O(depth of scope nesting) — although some compilers
just assume this will be small enough to not matter.

— Compilers that care may use hash tables with additional
information to get the scope nesting right.

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

Error Recovery

* What to do when an undeclared identifier is
encountered?
— Only complain once (Why?)
— Can forge a symbol table entry for it once you’ve
complained so it will be found in the future
— Assign the forged entry a type of “unknown”

— “Unknown” is the type of all malformed expressions and is
compatible with all other types
* Allows you to only complain once! (How?)

Winter 2013 UW CSE 401 (Michael Ringenburg) 38

’ “Predefined” Things

* Many languages have some “predefined”
items (functions, classes, standard library, ...)

* Include initialization code or declarations in
the compiler to manually create symbol table
entries for these when the compiler starts up

— Rest of compiler generally doesn’t need to know

the difference between “predeclared” items and
ones found in the program

— Possible to put “standard prelude” information in
a file or data resource and use that to initialize
¢ Tradeoffs?

Winter 2013 UW CSE 401 (Michael Ringenburg)

39

’ What’s coming up?

* Type checking!

* x86 overview, from the perspective of a
compiler targeting x86 assembly.

* And a midterm!

Winter 2013 UW CSE 401 (Michael Ringenburg)

40

