CSE 401 — Compilers

Lecture 12: A Survey of Intermediate
Representations

Michael Ringenburg
Winter 2013

’ Reminders

* Homework 2 due by the end of the day today

* Project Part 2 due in 9 days

— Part 2 typically takes a bit longer than part 1, so
don’t put it off

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Agenda

* Survey of Intermediate Representations

— Graphical Representations

* Control Flow Graph

* Dependence Graph

* Concrete/Abstract Syntax Trees (ASTs)
— Linear Representations

* Stack based

* 3 address

* We will go into some of these in more depth
as they come up later in the course

Winter 2013 UW CSE 401 (Michael Ringenburg) 3

Compiler Structure

(maybe
tokens different) IR (often different)

characters Assembly or binary code

Winter 2013 UW CSE 401 (Michael Ringenburg) 4

Q Intermediate
Representations

* In most compilers, the parser builds an
intermediate representation of the program
— Typically an AST, like your MiniJava compilers

* Rest of the compiler transforms the IR to improve
(“optimize”) it and eventually translates it to final
code

— Typically will transform initial IR to one or more lower
level IRs along the way

* Some high-level examples today; more specific
details as we cover later topics

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

’ IR Design Considerations

* Decisions affect speed and efficiency of the rest of
the compiler

— General rule: Compile time is important, but performance
of executable often more important.

— Typical use case is compile few times, run many times.

— So make choices that improve compile time, as long as
they don’t impact performance of generated code.

— “Coffee Break Rule”: Compilation of a reasonable sized

code shouldn’t take longer than an average coffee break,
or customers will complain.

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

9 IR Design

* Desirable properties
— Easy to generate
— Easy to manipulate
— Expressive
— Appropriate level of abstraction
* Different tradeoffs depending on compiler goals
* Different tradeoffs in different parts of the same
compiler
— Leads to different IRs in different parts.

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

’ IR Design Dimensions

* Structure
— Graphical (trees, graphs, etc.)
— Linear (code for some abstract machine)

— Hybrids are common (e.g., control-flow graphs
with linear code in basic blocks)

e Abstraction Level

— High-level, near to source language

— Low-level, closer to machine, more exposed to
compiler

Winter 2013 UW CSE 401 (Michael Ringenburg) 8

9 Example: Array Reference

Source: Alij] Low-level linear (3 address):

loadI 1 => rl
sub rj,rl => r2
AST: i
loadI 10 => r3
mult r2,r3 => r4
sub ri,rl => r5
add rd,r5 => ré6
High level linear: loadI @A => r7
t1 éA[i,j] add r7,r6 => r8
load «r8 => r9
Winter 2013 UW CSE 401 (Michael Ringenburg) 9

Levels of Abstraction

* Key design decision: how much detail to expose
— Affects possibility and profitability of various
optimizations
* Depends on phase: Semantic Analysis, some optimizations

prefer high level. Other optimizations, resource allocation,
code generation prefer low level.

— Most high-level IRs are graphical
* But graphical IRs are also used with low-level

— Linear IRs are typically low-level
— But these generalizations don’t always hold

Winter 2013 UW CSE 401 (Michael Ringenburg) 10

9 Graphical IRs

* |IRs represented as a graph (or tree)

* Nodes and edges typically reflect some structure
of the program
— E.g., source, control flow, data dependence

* May be large (especially syntax trees)

* High-level examples: Syntax trees, DAGs
— Generally used in early phases of compilers

* Other examples: Control flow graphs and data
dependence graphs
— Often used in optimization and code generation

Winter 2013 UW CSE 401 (Michael Ringenburg) 11

’ Graphical IR:
Concrete Syntax Trees

* The full grammar is needed to guide the parser, but
contains many extraneous details
— E.g., syntactic tokens, rules that control precedence

* Typically the full syntax tree does not need to be
used explicitly

Winter 2013 UW CSE 401 (Michael Ringenburg) 12

Graphical IR:
Abstract Syntax Trees

* Want only essential structural information (omit extra junk)
* Can be represented explicitly as a tree or in a linear form, e.g.,
in the order of a depth-first traversal. For a[i+j], this might be:
Subscript
Id(A)
Plus
Id(i)
Id(3)
* Common output from parser; used for static semantics (type
checking, etc.) and sometimes high-level optimizations

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

* DAG = Directed Acyclic Graph

— In compilers, typically used to refer to an AST like structure,
where common components may be reused. E.g, the 2*ain
2*a + 2*a*b (above).

— Pros: Saves space, makes common subexpressions explicit.

— Cons: If want to change just one occurence, need to split off.
If variable value may change between evaluations, may not
want to treat as common.
Winter 2013 UW CSE 401 (Michael Ringenburg) 14

9 Control Flow Graph (CFG)

* Nodes are Basic Blocks

— Code that always executes together (i.e., no branches
into or out of the middle of the block).

— l.e., “straightline code”

* Edges represent paths that control flow could
take.
— l.e., possible execution orderings.

— Edge from Basic Block A to Basic Block B means Block
B could execute immediately after Block A completes.

* Required for much of the analysis done in the
optimizer.

Winter 2013 UW CSE 401 (Michael Ringenburg) 15

’ CFG Example

print(“hello”);
e v a=7;
1 (X - Y) { if (X - Y)

print(“equal”);
b=9; /\

print(“equal”);

print(“hello”);

} else { 5= o b = 10;
b = 10; ~— .
} while (a < b)
while (a < b) { ~
at+; at+;

print(“increase”); print(“increase”);

}
print (“done”); print(“done”);

Winter 2013 UW CSE 401 (Michael Ringenburg) 22

9 CFG Example

print(“hello”);
2, = U/f
i

print (“hello”);
a =717;

Note: There are variations in how function calls in
basic blocks are treated. It may depend on the level
of abstraction of the IR, as well as the semantics of
the language. For example, if a function may throw
an exception, the call should terminate the basic
block (since there is no guarantee that the call will w
return to the same point). In low-level IRs, calls

may also terminate blocks.

P IroY TIITo T Ao < T 7 l

10;

5

w

}
print (“done”) ; print (“done”);

Winter 2013 UW CSE 401 (Michael Ringenburg) 23

’ (Program/Data)
Dependence Graph
* Often used in conjunction with another IR.

* In a data dependence graph, edges between nodes
represent “dependencies” between the code
represented by those nodes.

— If A and B access the same data, and A must occur before B

to achieve correct behavior, then there is a dependence
edge from A to B.

— A->B means compiler can’t move B before A.

— Granularity of nodes varies. Depends on abstraction level

of rest of IR. E.g., nodes could be loads/stores, or whole
statements.

—Eg,a=2;b=2;c=a+7
* Where's the dependence?

Winter 2013 UW CSE 401 (Michael Ringenburg) 24

9 Types of dependencies

* Read-after-write (RAW)/“flow dependence”
— Eg,a=7,b=a+1;

— The read of ‘a’ must follow the write to ‘a’, otherwise it won’t
see the correct value.

* Write-after-read (WAR)/“anti dependence”
— Eg,b=a*2;a=5;

— The write to ‘@’ must follow the read of ‘a’, otherwise the read
won’t see the correct value.

* Write-after-write (WAW)/“output dependence”
— Eg,a=1;..a=2;..

— The writes to ‘@’ must happen in the correct order, otherwise ‘a’
will have the wrong final value.

* What about RAR/”input dependence”??

Winter 2013 UW CSE 401 (Michael Ringenburg) 25

’ Loop-Carried Dependencevﬁ

* Loop carried dependence: A dependence across
iterations of a loop

for (i=0; i < size; i++)
x = foo(x);

* RAW loop carried dependence: the read of ‘x’ depends
on the write of ‘X’ in the previous iteration

* Identifying and understanding these is critical for loop
vectorization and automatic loop parallelization,
because these may effectively reorder loop iterations.

— If the compiler “understands” the nature of the
dependence, it can sometimes be removed or dealt with

— Often use sophisticated array subscript analysis for this

Winter 2013 UW CSE 401 (Michael Ringenburg) 26

9 Dependence Graph
Example

a=717;

print(“hello”);

while (a < b) { LCD
print(“increase”);
at+; LCD

}

print(“done”);

LCD: Loop-Carried Dependence

Winter 2013 UW CSE 401 (Michael Ringenburg) 32

’ Linear IRs

* Pseudo-code for some abstract machine
* Level of abstraction varies

e Simple, compact data structures
— Commonly used: arrays, linked structures

* Examples: 3-address code, stack machine code

+ Fairly compact T1 €2 » Each instruction: pop push 2
« Compiler can control T2 € b operands, push result. push b
reuse of names — T3 &€ T1*T2 < Very compact multiply
clever choice can T4 < a » Easy to create push a
reveal optimizions. T5 < T4-T3 interpreter. subtract
» ILOC code » Java bytecode

Winter 2013 UW CSE 401 (Michael Ringenburg) 33

9 Abstraction Levels in
Linear IR
e Linear IRs can also be close to the source

language, very low-level, or somewhere in
between.

* E.g., Linear IRs for C array reference a[i][j+2]

— High-level: t1 < a[i,j+2]

Winter 2013 UW CSE 401 (Michael Ringenburg) 34

’ IRs for al[i,j+2], cont.

* Medium-level * Low-level
tl<—j+2 rl < [fp-4]
t2<i*20 r2<rl+2
t3<—t1+12 r3 < [fp-8]
t4d<—4*t3 r4d < r3*20
t5 < addra r5<r4+r2
t6 < t5+t4 r6<—4*r5
t7 < *t6 r7 < fp—216

fl < [r7+r6]

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

9 Abstraction Level
Tradeoffs

* High-level: good for some high-level

optimizations, semantic checking, but can’t

optimize things that are hidden (e.g., address
calculations in subscript operations)

* Low-level: Needed for good code generation and
resource utilization in back end, but lose some
semantic knowledge (e.g., variables)

* Medium-level: Exposes more, but still keeps
some semantic knowledge.

* Many compilers use all three at different phases.

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

e Hybrid IRs

 Combination of structural and linear

* Level of abstraction varies

* Most common example: control-flow graph
— Nodes: basic blocks. Within nodes, linear
representation of basic block’s code.
* May also see Dependence Graph
implemented as edges between linear
instructions.

— Possibly even inside CFG basic blocks

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

9 What IR to Use?

* Common choice: all(!)

— AST or other structural representation built by parser and
used in early stages of the compiler
* Closer to source code

* Good for semantic analysis
* Facilitates some higher-level optimizations
— Hybrid IR for optimization
— Lower to low-level linear IR for later stages of compiler
* Closer to machine code
* Exposes machine-related optimizations
* Good for resource allocation and scheduling

Winter 2013 UW CSE 401 (Michael Ringenburg) 38

’ Coming Attractions

* Next 2-3 lectures — stuff you need for project
part 3: semantic analysis, type checking, and
symbol tables.

* Then, x86 overview (for code gen — project
part 4).

Winter 2013 UW CSE 401 (Michael Ringenburg) 39

