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Terminology 

n  Parallelism: a property of a 
computation that lets us execute 
multiple pieces of it at once 

n  Concurrency: the property of an 
execution actually taking advantage of 
parallelism 
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Terminology 

n  Message-passing concurrency 

 
n  Shared-memory concurrency 

12/7/11 X3-3 © 2002-11 Hal Perkins & UW CSE 

P P 

P 

P P P 

MEM 



Terminology 

n  Thread (“thread of execution”): state 
needed for running a program assuming 
the code is mostly self-contained; 
generally means PC, stack, registers 

n  A process can be thought of as a thread 
plus 
n  Contents of memory 
n  OS resources (eg file descriptors, sockets) 
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Safety of optimization 

n  A standard constraint / definition:"
n  If, in their actual program context, the result 

of evaluating e' cannot be distinguished 
from the result of evaluating e, the compiler 
can substitute e' for e"

n  What does this mean in a multi-
threaded setting? 
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Register promotion 

// x is global, initially 0 
 
void foo(int* a, int n) { 
  for (int i = 0; i < n; ++i) 
    x += i; 
} 
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Register promotion 

// x is global, initially 0 
 
void foo(int* a, int n) { 
  for (int i = 0; i < n; ++i) 
    x += i; 
} 

// Optimized 
 
void foo(int* a, int n) { 
  int reg = x; 
  for (int i = 0; i < n; ++i) 
    reg += i; 
  x = reg; 
} 
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Before optimization 

// x is global, initially 0 
 
// Thread 1 
 
void foo(int* a, int n) { 
  for (int i = 0; i < n; ++i) 
    x += i; 
} 

// Thread 2 
 
void bar() { 
  x = 10; 
  ... 
} 

What happens when n == 0? 
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After optimization 

// x is global, initially 0 
 
// Thread 1 
 
void foo(int* a, int n) { 
  int reg = x; 
  for (int i = 0; i < n; ++i) 
    reg += i; 
  x = reg; 
} 

// Thread 2 
 
void bar() { 
  x = 10; 
  ... 
} 

What happens when n == 0? 
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What happened? 

n  In executions where n == 0, the 
compiler optimization creates a value 
out of thin air 
n  Original code:  x == 10 is guaranteed 
n  Optimized code:  new write of x = 0 

(inserted x = reg) creates new result 
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How did we get here? 

n  C & C++ originally defined as single-
threaded languages 
n  Compilers didn’t consider threads 
n  Threads were provided by external libraries 

(e.g. pthreads) that defined their own 
semantics 

n  This is a broken model! 
n  New specs explicitly deal with threads 

(Boehm, et al) 
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Dekker’s example 

n  Initially, x == y == 0 

n  What are possible executions? 

Thread 1 
  x = 1;    (a) 
  r1 = y;   (b) 

Thread 2 
  y = 1;     (c) 
  r2 = x;   (d) 
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Dekker’s example 

n  Initially, x == y == 0 

n  What are possible executions? 
n  Consider interleavings of thread 1 & 2: 

n  abcd, acbd, acdb, cdab, cadb, cabd 

Thread 1 
  x = 1;    (a) 
  r1 = y;   (b) 

Thread 2 
  y = 1;     (c) 
  r2 = x;   (d) 
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Dekker’s example 

n  Initially, x == y == 0 

n  Can r1 == r2 == 0? 
n  No interleaving gives this results, but... 
n  Most hardware will allow it (store buffers) 
n  Many compilers will allow it (instruction 

scheduling) 

Thread 1 
  x = 1; 
  r1 = y; 

Thread 2 
  y = 1; 
  r2 = x; 
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What is a correct execution? 

n  Simplest notion: sequential consistency 
(Lamport ’79)  

"... the result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by its program.""

n  This is essentially the interleaving model 
n  Too expensive (?) 

n  Nobody implements this in practice 
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Refined notion 

n  Guarantee sequential consistency only 
for correctly synchronized programs 
(Adve) 
n  Give the programmer rules to follow 
n  Give simple semantics when rules are obeyed 

n  Correctly synchronized 
n  Must be intuitive to programmer 
n  Must not be restrictive for implementer 
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Data races 

n  Two operations conflict if they both 
access a memory location and one is a 
write  

n  A execution contains a data race if two 
adjacent operations from two different 
threads conflict 
n  x = 1; y = 1; r1 = y; r2 = x; 

n  A program is race-free if no sequentially 
consistent execution (i.e., interleaving) 
has a data race 
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Correct synchronization 

n  We call a program correctly 
synchronized  if it is data race free 

n  Basic contract: 
n  If programmers write race free programs, 

implementers will provide sequentially 
consistent semantics 

n  This is the fundamental underpinning for 
Java, C, and C++ memory models 

12/7/11 X3-18 © 2002-11 Hal Perkins & UW CSE 



Another example 

n  Dekker’s example is not race free 
   
n  What about:  (initially, x == y == 0) 

Thread 1 
  r1 = x; 
  if (r1 > 0) 
    y = 1; 

Thread 2 
  r2 = y; 
  if (r2 > 0) 
    x = 1; 
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How do we avoid races? 

n  Mutual exclusion: 
n  Thread acquires lock before accessing a 

shared variable: 

n  Locks disallow problematic interleavings 

Thread 1 
  lock (mutex); 
  tmp1 = x; 
  tmp2 = tmp1 + 1; 
  x = tmp2 
  unlock (mutex); 

Thread 2 
  lock (mutex); 
  tmp3 = x; 
  tmp4 = tmp3 + 1; 
  x = tmp4 
  unlock (mutex); 
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How do we avoid races? 
n  Volatile variables (‘atomic’ in C++11): 

n  Certain variables are declared with 
stronger ordering semantics (initially, x 
and flag are 0):  

n  If flag is declared volatile, then write to x 
cannot be sunk in T1 and read from x 
cannot be hoisted in T2 by definition   
n  Compiler must respect ordering 

Thread 1 
  x = 1; 
  flag = 1; 

Thread 2 
  if (flag == 1) 
    t = x; 
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What does this mean for 
compilers? 

n  In the absence of synchronization, 
compilers may almost operate as if 
programs were single-threaded 

n  Compilers must respect ordering due to 
synchronization (and generate necessary 
hardware instructions) 

n  Caveat: compiler must not introduce 
races into correctly synchronized code 
(e.g. register promotion) 
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What happens on a race? 
n  In C++, undefined semantics 

n  Valid results: 

Thread 1     (x == y == 0) 
  x = 1;    (a) 
  r1 = y;   (b) 

Thread 2 
  y = 1;     (c) 
  r2 = x;   (d) 
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What happens on a race? 
n  In C++, undefined semantics 

n  Valid results: 
n  r1 = 0 and r2 = 0 
n  r1 = 0 and r2 = 2 
n  “format c:\” 

n  No such thing as a benign race in C++! 

Thread 1     (x == y == 0) 
  x = 1;    (a) 
  r1 = y;   (b) 

Thread 2 
  y = 1;     (c) 
  r2 = x;   (d) 
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Hard to bound effects 

n  Compiler should 
be able to 
generate table 
n  Assumes x in 

range after check 
n  Async change to 

x causes arbitrary 
behavior 

unsigned x; 
 
if (x < 3) { 
  // x modified by another 
  // thread 
  switch (x) { 
    case 0: ... 
    case 1: ... 
    case 2: ... 
  } 
} 
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A benign data race 

n  Evan noticed a race similar to this in 
his code recently 

vector<bool> flags(50); …fill flags… 
vector<bool> flags2(50, false); 
start N threads running f(flags, flags2) 
 
void f(vector<bool> v, vector<bool>& v2) 
{ 

 for(int i = 0; i < 50; i++) 
  v2[i] = 3 * v[i]; 

} 
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Java Memory Model 

n  Data races can’t be allowed to violate 
type safety 

n  Security is a big deal in java, so need a 
semantics in the presence of races 

n  Solution so far: statically defined 
ordering over runtime operations, 
including synchronization operations 
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