
12/7/11 © 2002-11 Hal Perkins & UW CSE X3-1

Concurrency and Optimization

Evan Herbst
adapted from Hal Perkins’ fall ‘11

CSEP501 slides

Terminology

n  Parallelism: a property of a
computation that lets us execute
multiple pieces of it at once

n  Concurrency: the property of an
execution actually taking advantage of
parallelism

12/7/11 X3-2 © 2002-11 Hal Perkins & UW CSE

Terminology

n  Message-passing concurrency

n  Shared-memory concurrency

12/7/11 X3-3 © 2002-11 Hal Perkins & UW CSE

P P

P

P P P

MEM

Terminology

n  Thread (“thread of execution”): state
needed for running a program assuming
the code is mostly self-contained;
generally means PC, stack, registers

n  A process can be thought of as a thread
plus
n  Contents of memory
n  OS resources (eg file descriptors, sockets)

12/7/11 X3-4 © 2002-11 Hal Perkins & UW CSE

Safety of optimization

n  A standard constraint / definition:"
n  If, in their actual program context, the result

of evaluating e' cannot be distinguished
from the result of evaluating e, the compiler
can substitute e' for e"

n  What does this mean in a multi-
threaded setting?

12/7/11 X3-5 © 2002-11 Hal Perkins & UW CSE

Register promotion

// x is global, initially 0

void foo(int* a, int n) {
 for (int i = 0; i < n; ++i)
 x += i;
}

12/7/11 X3-6 © 2002-11 Hal Perkins & UW CSE

Register promotion

// x is global, initially 0

void foo(int* a, int n) {
 for (int i = 0; i < n; ++i)
 x += i;
}

// Optimized

void foo(int* a, int n) {
 int reg = x;
 for (int i = 0; i < n; ++i)
 reg += i;
 x = reg;
}

12/7/11 X3-7 © 2002-11 Hal Perkins & UW CSE

Before optimization

// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
 for (int i = 0; i < n; ++i)
 x += i;
}

// Thread 2

void bar() {
 x = 10;
 ...
}

What happens when n == 0?

12/7/11 X3-8 © 2002-11 Hal Perkins & UW CSE

After optimization

// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
 int reg = x;
 for (int i = 0; i < n; ++i)
 reg += i;
 x = reg;
}

// Thread 2

void bar() {
 x = 10;
 ...
}

What happens when n == 0?

12/7/11 X3-9 © 2002-11 Hal Perkins & UW CSE

What happened?

n  In executions where n == 0, the
compiler optimization creates a value
out of thin air
n  Original code: x == 10 is guaranteed
n  Optimized code: new write of x = 0

(inserted x = reg) creates new result

12/7/11 X3-10 © 2002-11 Hal Perkins & UW CSE

How did we get here?

n  C & C++ originally defined as single-
threaded languages
n  Compilers didn’t consider threads
n  Threads were provided by external libraries

(e.g. pthreads) that defined their own
semantics

n  This is a broken model!
n  New specs explicitly deal with threads

(Boehm, et al)

12/7/11 © 2002-11 Hal Perkins & UW CSE X3-11

Dekker’s example

n  Initially, x == y == 0

n  What are possible executions?

Thread 1
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

12/7/11 X3-12 © 2002-11 Hal Perkins & UW CSE

Dekker’s example

n  Initially, x == y == 0

n  What are possible executions?
n  Consider interleavings of thread 1 & 2:

n  abcd, acbd, acdb, cdab, cadb, cabd

Thread 1
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

12/7/11 X3-13 © 2002-11 Hal Perkins & UW CSE

Dekker’s example

n  Initially, x == y == 0

n  Can r1 == r2 == 0?
n  No interleaving gives this results, but...
n  Most hardware will allow it (store buffers)
n  Many compilers will allow it (instruction

scheduling)

Thread 1
 x = 1;
 r1 = y;

Thread 2
 y = 1;
 r2 = x;

12/7/11 X3-14 © 2002-11 Hal Perkins & UW CSE

What is a correct execution?

n  Simplest notion: sequential consistency
(Lamport ’79)  

"... the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program.""

n  This is essentially the interleaving model
n  Too expensive (?)

n  Nobody implements this in practice

12/7/11 X3-15 © 2002-11 Hal Perkins & UW CSE

Refined notion

n  Guarantee sequential consistency only
for correctly synchronized programs
(Adve)
n  Give the programmer rules to follow
n  Give simple semantics when rules are obeyed

n  Correctly synchronized
n  Must be intuitive to programmer
n  Must not be restrictive for implementer

12/7/11 X3-16 © 2002-11 Hal Perkins & UW CSE

Data races

n  Two operations conflict if they both
access a memory location and one is a
write

n  A execution contains a data race if two
adjacent operations from two different
threads conflict
n  x = 1; y = 1; r1 = y; r2 = x;

n  A program is race-free if no sequentially
consistent execution (i.e., interleaving)
has a data race

12/7/11 X3-17 © 2002-11 Hal Perkins & UW CSE

Correct synchronization

n  We call a program correctly
synchronized if it is data race free

n  Basic contract:
n  If programmers write race free programs,

implementers will provide sequentially
consistent semantics

n  This is the fundamental underpinning for
Java, C, and C++ memory models

12/7/11 X3-18 © 2002-11 Hal Perkins & UW CSE

Another example

n  Dekker’s example is not race free

n  What about: (initially, x == y == 0)

Thread 1
 r1 = x;
 if (r1 > 0)
 y = 1;

Thread 2
 r2 = y;
 if (r2 > 0)
 x = 1;

12/7/11 X3-19 © 2002-11 Hal Perkins & UW CSE

How do we avoid races?

n  Mutual exclusion:
n  Thread acquires lock before accessing a

shared variable:

n  Locks disallow problematic interleavings

Thread 1
 lock (mutex);
 tmp1 = x;
 tmp2 = tmp1 + 1;
 x = tmp2
 unlock (mutex);

Thread 2
 lock (mutex);
 tmp3 = x;
 tmp4 = tmp3 + 1;
 x = tmp4
 unlock (mutex);

12/7/11 X3-20 © 2002-11 Hal Perkins & UW CSE

How do we avoid races?
n  Volatile variables (‘atomic’ in C++11):

n  Certain variables are declared with
stronger ordering semantics (initially, x
and flag are 0):

n  If flag is declared volatile, then write to x
cannot be sunk in T1 and read from x
cannot be hoisted in T2 by definition
n  Compiler must respect ordering

Thread 1
 x = 1;
 flag = 1;

Thread 2
 if (flag == 1)
 t = x;

12/7/11 X3-21 © 2002-11 Hal Perkins & UW CSE

What does this mean for
compilers?

n  In the absence of synchronization,
compilers may almost operate as if
programs were single-threaded

n  Compilers must respect ordering due to
synchronization (and generate necessary
hardware instructions)

n  Caveat: compiler must not introduce
races into correctly synchronized code
(e.g. register promotion)

12/7/11 X3-22 © 2002-11 Hal Perkins & UW CSE

What happens on a race?
n  In C++, undefined semantics

n  Valid results:

Thread 1 (x == y == 0)
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

12/7/11 X3-23 © 2002-11 Hal Perkins & UW CSE

What happens on a race?
n  In C++, undefined semantics

n  Valid results:
n  r1 = 0 and r2 = 0
n  r1 = 0 and r2 = 2
n  “format c:\”

n  No such thing as a benign race in C++!

Thread 1 (x == y == 0)
 x = 1; (a)
 r1 = y; (b)

Thread 2
 y = 1; (c)
 r2 = x; (d)

12/7/11 X3-24 © 2002-11 Hal Perkins & UW CSE

Hard to bound effects

n  Compiler should
be able to
generate table
n  Assumes x in

range after check
n  Async change to

x causes arbitrary
behavior

unsigned x;

if (x < 3) {
 // x modified by another
 // thread
 switch (x) {
 case 0: ...
 case 1: ...
 case 2: ...
 }
}
12/7/11 X3-25 © 2002-11 Hal Perkins & UW CSE

A benign data race

n  Evan noticed a race similar to this in
his code recently

vector<bool> flags(50); …fill flags…
vector<bool> flags2(50, false);
start N threads running f(flags, flags2)

void f(vector<bool> v, vector<bool>& v2)
{

 for(int i = 0; i < 50; i++)
 v2[i] = 3 * v[i];

}
12/7/11 X3-26 © 2002-11 Hal Perkins & UW CSE

Java Memory Model

n  Data races can’t be allowed to violate
type safety

n  Security is a big deal in java, so need a
semantics in the presence of races

n  Solution so far: statically defined
ordering over runtime operations,
including synchronization operations

12/7/11 © 2002-11 Hal Perkins & UW CSE X3-27

References
n  Memory Models: A Case for Rethinking Parallel

Languages and Hardware
Adve and Boehm, CACM Aug. 2010

n  Foundations of the C++ Concurrency Memory
Model
Boehm and Adve, PLDI 2008

n  Threads Cannot be Implemented as a Library,
Boehm, 2004

n  Many slides by Vijay Menon, CSE 501, Sp09

12/7/11 © 2002-11 Hal Perkins & UW CSE X3-28

