
10/20/11 © 2002-11 Hal Perkins & UW CSE H-1

CSE 401 – Compilers

Implementing ASTs
(in Java)

Hal Perkins
Autumn 2011

10/20/11 © 2002-11 Hal Perkins & UW CSE H-2

Review: ASTs
n  An Abstract Syntax Tree

captures the essential
structure of the
program, without the
extra concrete grammar
details needed to guide
the parser

n  Example:

while (n > 0) {
 n = n – 1;
}

n  AST:

10/20/11 © 2002-11 Hal Perkins & UW CSE H-3

Representation in Java

n  Basic idea: use small classes as records
(structs) to represent AST nodes
n  Simple data structures, not too smart
n  Take advantage of type system

n  But also use a bit of inheritance so we
can treat related nodes polymorphically

10/20/11 © 2002-11 Hal Perkins & UW CSE H-4

Expressions
// Base class for all expressions
public abstract class ExpNode extends ASTNode { … }

// exp1 op exp2
public class BinExp extends ExpNode {

 public ExpNode exp1, exp2; // operands
 public int op; // operator (lexical token)
 public BinExp(Token op, ExpNode exp1, ExpNode exp2) {
 this.op = op; this.exp1 = exp1; this.exp2 = exp2;
 }
 public String toString() {
 …
 }

}

10/20/11 © 2002-11 Hal Perkins & UW CSE H-5

More Expressions
// Method call: id(arguments)
public class MethodExp extends ExpNode {

 public ExpNode id; // method
 public List args; // list of argument expressions
 public BinExp(ExpNode id, List args) {
 this.id = id; this.args = args;
 }
 public String toString() {
 …
 }

}

&c

n  You’ll also need nodes for class and
method declarations, parameter lists, and
so forth

n  For the project we strongly suggest using
the AST classes in the starter code, which
are taken from the MiniJava website
n  Modify if you need to & know what you’re

doing

10/20/11 © 2002-11 Hal Perkins & UW CSE H-6

10/20/11 © 2002-11 Hal Perkins & UW CSE H-7

Position Information in Nodes

n  To produce useful error messages, it’s helpful
to record the source program location
corresponding to a node in that node
n  Most scanner/parser generators have a hook for

this, usually storing source position information in
tokens

n  Included in the MiniJava starter code – good idea
to take advantage of it in your code

AST Generation

n  Idea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links to the
subtrees that are the components of
the production)

n  When we finish parsing, the result of
the goal symbol is the complete AST for
the program

10/20/11 © 2002-11 Hal Perkins & UW CSE H-8

AST Generation in YACC/CUP

n  A result type can be specified for each
item in the grammar specification

n  Each parser rule can be annotated with
a semantic action, which is just a piece
of Java code that returns a value of the
result type

n  The semantic action is executed when
the rule is reduced

10/20/11 © 2002-11 Hal Perkins & UW CSE H-9

10/20/11 © 2002-11 Hal Perkins & UW CSE H-10

YACC/CUP Parser Specification

n  Specification
 non terminal StmtNode stmt, whileStmt;
 non terminal ExpNode exp;
 …
 stmt ::= …
 | WHILE LPAREN exp:e RPAREN stmt:s
 {: RESULT = new WhileNode(e,s); :}
 ;

n  See the starter code for version with line numbers

10/20/11 © 2002-11 Hal Perkins & UW CSE H-11

ANTLR/JavaCC/others

n  Integrated tools like these provide tools to
generate syntax trees automatically
n  Advantage: saves work; don’t need to define

AST classes and write semantic actions
n  Disadvantage: generated trees might not have

the right level of abstraction for what you
want to do

n  For our project, do-it-yourself with CUP
n  Starter code should give the general idea

10/20/11 © 2002-11 Hal Perkins & UW CSE H-12

Operations on ASTs

n  Once we have the AST, we may want to:
n  Print a readable dump of the tree (pretty printing)
n  Do static semantic analysis:

n  Type checking
n  Verify that things are declared and initialized properly
n  Etc. etc. etc. etc.

n  Perform optimizing transformations on the tree
n  Generate code from the tree, or
n  Generate another IR from the tree for further

processing

10/20/11 © 2002-11 Hal Perkins & UW CSE H-13

Where do the Operations Go?

n  Pure “object-oriented” style
n  Really, really, really smart AST nodes
n  Each node knows how to perform every operation

on itself
 public class WhileNode extends StmtNode {
 public WhileNode(…);
 public typeCheck(…);
 public StrengthReductionOptimize(…);
 public generateCode(…);
 public prettyPrint(…);
 …
 }

10/20/11 © 2002-11 Hal Perkins & UW CSE H-14

Modularity Issues

n  Smart nodes make sense if the set of
operations is relatively fixed, but we
expect to need flexibility to add new
kinds of nodes

n  Example: graphics system
n  Operations: draw, move, iconify, highlight
n  Objects: textbox, scrollbar, canvas, menu,

dialog box, plus new objects defined as the
system evolves

10/20/11 © 2002-11 Hal Perkins & UW CSE H-15

Modularity in a Compiler

n  Abstract syntax does not change frequently
over time
n  ∴ Kinds of nodes are relatively fixed

n  As a compiler evolves, it is common to modify
or add operations on the AST nodes
n  Want to modularize each operation (type check,

optimize, code gen) so its components are
together

n  Want to avoid having to change node classes
when we modify or add an operation on the tree

10/20/11 © 2002-11 Hal Perkins & UW CSE H-16

Two Views of Modularity

Type check

O
ptim

ize

G
enerate x86

Flatten

Print

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

draw

m
ove

iconify

highlight

transm
ogrify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

10/20/11 © 2002-11 Hal Perkins & UW CSE H-17

Visitor Pattern
n  Idea: Package each operation (optimization,

print, code gen, …) in a separate class
n  Create one instance of this visitor class

n  Sometimes called a “function object”
n  Contains all of the methods for that particular

operation, one for each kind of AST node
n  Include a generic “accept visitor” method in

every node class
n  To perform the operation, pass the “visitor

object” around the AST during a traversal

Avoiding instanceof

n  We’d like to avoid huge if-elseif nests in
the visitor to discover the node types

void checkTypes(ASTNode p) {
 if (p instanceof WhileNode) { … }
 else if (p instanceof IfNode) { … }
 else if (p instanceof BinExp) { … }

…
}

10/20/11 © 2002-11 Hal Perkins & UW CSE H-18

Visitor Double Dispatch

n  Include a “visit” method for every AST
node type in each Visitor

void visit(WhileNode);
void visit(ExpNode);
etc.

n  Include an accept(Visitor v) method in
each AST node class

n  When Visitor v is passed to AST node,
node’s accept method calls v.visit(this)
n  Selects correct Visitor method for this node
n  “Double dispatch”

10/20/11 © 2002-11 Hal Perkins & UW CSE H-19

10/20/11 © 2002-11 Hal Perkins & UW CSE H-20

Accept Method in Each AST
Node Class

n  Example
 public class WhileNode extends StmtNode {
 …
 // accept a visit from a Visitor object v
 public void accept(Visitor v) {
 v.visit(this); // dynamic dispatch on “this” (WhileNode)
 }
 …
 }

n  Key points
n  Visitor object passed as a parameter to WhileNode
n  WhileNode calls visit, which dispatches to visit(WhileNode)

automatically – i.e., the correct method for this kind of node

Composite Objects

n  What if an AST node refers to subnodes?
n  Visitors often control the traversal

 public void visit(WhileNode p) {
 p.expr.accept(this);
 p.stmt.accept(this);
 }

n  Also possible to include more than one kind
of accept method in each node to let nodes
implement different kinds of traversals
n  Probably not needed for MiniJava project

10/20/11 © 2002-11 Hal Perkins & UW CSE H-21

10/20/11 © 2002-11 Hal Perkins & UW CSE H-22

Example TypeCheckVisitor
// Perform type checks on the AST
public class TypeCheckVisitor implements Visitor {

 // override operations for each node type
 public void visit(BinExp e) {
 // visit subexpressions – pass this visitor object
 e.exp1.accept(this); //store its type in var, say, Type type1
 e.exp2.accept(this); //ditto type2
 assert(type1.join(type2).equals(type1)

 || type1.join(type2).equals(type2)); //use a type lattice
 }

 public void visit(WhileNode s) { … } …
}

10/20/11 © 2002-11 Hal Perkins & UW CSE H-23

Encapsulation

n  A visitor object often needs to be able
to access state in the AST nodes
n  ∴ May need to expose more node state

than we might do to otherwise
n  Overall a good tradeoff – better modularity

n  (plus, the nodes are relatively simple data
objects anyway – not hiding much of anything)

References

n  For Visitor pattern (and many others)
n  Design Patterns: Elements of Reusable

Object-Oriented Software, Gamma, Helm,
Johnson, and Vlissides, Addison-Wesley,
1995 (the classic, uses C++, Smalltalk)

n  Object-Oriented Design & Patterns,
Horstmann, A-W, 2nd ed, 2006 (uses Java)

n  Specific information for MiniJava AST
and visitors in Appel textbook & online

10/20/11 © 2002-11 Hal Perkins & UW CSE H-24

