
12/6/2011 © 2002-11 Hal Perkins & UW CSE W-1

CSE 401 – Compilers

Memory Management
and Garbage Collection

Hal Perkins

Autumn 2011

References

 Uniprocessor Garbage Collection
Techniques
Wilson, IWMM 1992 (longish survey)

 The Garbage Collection Handbook
Jones, Hosking, Moss, 2012 (book)

 Adapted from slides by Vijay Menon, CSE
501, Sp09

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-2

Program Memory

 Typically divided into 3 regions:

 Global / Static: fixed-size at compile time;
exists throughout program lifetime

 Stack / Automatic: per function, automatically
allocated and released (local variables)

 Heap: Explicitly allocated by programmer
(malloc/new/cons)

 Need to recover storage for reuse when no longer
needed

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-3

Manual Heap Management

 Programmer calls free/delete when
done with storage

 Pro
 Cheap

 Precise

 Con
 How do we enumerate the ways?

 Buggy, huge debugging costs, …

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-4

Garbage Collection

 Automatically reclaim heap memory no
longer in use by the program

 Simplify programming

 Better modularity, concurrency

 Avoids huge problems with dangling pointers

 Almost required for type safety

 But not a panacea – still need to watch for
stale pointers, GC’s version of “memory leaks”

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-5

Heap Characteristics

 Most objects are small (< 128 bytes)

 Object-oriented and functional code
allocates a huge number of short-lived
objects

 Want allocation, recycling to be fast and
low overhead

 Serious engineering required

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-6

What is Garbage?

 An object is live if it is still in use

 Need to be conservative

 OK to keep memory no longer in use

 Not ok to reclaim something that is live

 An object is garbage if it is not live

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-7

Reachability

 Root set : the set of global and local
(stack/register) variables visible to active
procedures

 Heap objects are reachable if:
 They are directly accessible from the root set
 They are accessible from another reachable

heap object (pointers/references)

 Liveness implies reachability (conservative
approximation)

 Not reachable implies garbage

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-8

Reachability

 Compiler produces:

 A stack-map at GC safe points
 Stack map: enumerate global variables, stack

variables, live registers (tricky stuff! Why?)

 GC safe points: new(), method entry, method
exit, back edges (thread switch points)

 Type information blocks
 Identifies reference fields in objects (to trace

the heap)

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-9

Tracing Collectors

 Mark the objects reachable from the
root set, then perform a transitive
closure to find all reachable objects

 All unmarked objects are dead and can
be reclaimed

 Various algorithms: mark-sweep,
copying, generational…

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-10

Mark-Sweep Allocation

 Multiple free lists organized by size for
small objects (8, 16, 24, 32, … depends on
alignment); additional list for large blocks

 Regular malloc does exactly the same

 Allocation

 Grab a free object from the right free list

 No more memory of the right size triggers a
collection

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-11

Mark-Sweep Collection

 Mark phase – find the live objects

 Transitive closure from root set marking all
live objects

 Sweep phase

 Sweep memory for unmarked objects and
return to appropriate free list(s)

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-12

Mark-Sweep Evaluation

 Pro
 Space efficiency

 Incremental object reclamation

 Con
 Relatively slower allocation time

 Poor locality of objects allocated at around the
same time

 Redundant work rescanning long-lived objects

 “Stop the world I want to collect”

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-13

Semispace Copying Collector

 Idea: Divide memory in half

 Storage allocated from one half of memory

 When full, copy live objects from old half
(“from space”) to unused half (“to space”)
& swap semispaces

 Fast allocation – next chunk of to-space

 Requires copying collection of entire
heap when collection needed

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-14

Semispace collection

 Same notion of root set and reachable as
in mark-sweep collector

 Copy each object when first encountered

 Install forwarding pointers in from-space
referring to new copy in to-space

 Transitive closure: follow pointers, copy,
and update as it scans

 Reclaims entire “from space” in one shot
 Swap from- and to-space when copy done

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-15

Semispace Copying Collector
Evaluation

 Pro
 Fast allocation
 Locality of objects allocated at same time
 Locality of objects connected by pointers (can

use depth-first or other strategies during the
mark-copy phase)

 Con
 Wastes half of memory
 Redundant work rescanning long-lived objects
 “Stop the world I want to collect”

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-16

Generational Collectors

 Generational hypothesis: young objects
die more quickly than older ones
(Lieberman & Hewitt ‘83, Ungar ‘84)

 Most pointers are from younger to older
objects (Appel ‘89, Zorn ‘90)

 So, organize heap into young and old
regions, collect young space more often

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-17

Generational Collector

 Divide heap into two spaces: young, old
 Allocate new objects in young space
 When young space fills up, collect it and

copy surviving objects to old space
 Engineering: use barriers to avoid having to

scan all of old space on quick collections
 Refinement: require objects to survive at least

a few collections before copying

 When old space fills, collect both
 Can generalize to multiple generations

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-18

GC Tradeoffs

 Performance
 Mark-sweep often faster than semispace

 Generational better than both

 Mutator performance
 Semispace is often fastest

 Generational is better than mark-sweep

 Overall: generational is a good balance

 But: we still “stop the world” to collect

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-19

Open Research Areas

 Parallel/concurrent garbage collection

 Found in some production collectors now

 Tricky stuff – can’t debug it into correctness –
there be theorems here

 Locality issues

 Object collocation

 GC-time analysis

 Distributed GC

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-20

Compiler & Runtime Support

 GC tightly coupled with safe runtime
(e.g., Java, CLR, functional languages)

 Total knowledge of pointers (type safety)

 Tagged objects with type information

 Compiler maps for information

 Objects can be moved; forwarding pointers

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-21

What about unsafe
languages? (e.g., C/C++)

 Boehm/Weiser collector: GC still
possible without compiler/runtime
cooperation(!)

 If it looks like a pointer, it’s a pointer

 Mark-sweep only – GC doesn’t move
anything

 Allows GC in C/C++ but constraints on
pointer bit-twiddling

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-22

Boehm/Weiser Collector

 Useful for development/debugging

 Less burden on compiler/runtime
implementor

 Used in various Java and .net
implementations

 Similar ideas for various tools to detect
memory leaks, etc.

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-23

And a bit of perspective…

 Automatic GC has been around since
LISP I in 1958

 Ubiquitous in functional and object-
oriented programming communities for
decades

 Mainstream since Java(?) (mid-90s)

 Now conventional wisdom?

12/6/2011 © 2002-11 Hal Perkins & UW CSE W-24

