CSE 401 – Compilers

Dataflow Analysis
Hal Perkins
Winter 2011
Agenda

- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
Available Expressions

- Goal: use dataflow analysis to find common subexpressions
- Idea: calculate *available expressions* at beginning of each basic block
- Avoid re-evaluation of an available expression – use a copy operation
 - Simple inside a single block; more complex dataflow analysis used across blocks
“Available” and Other Terms

- An expression \(e \) is **defined** at point \(p \) in the CFG if its value is computed at \(p \)
 - Sometimes called *definition site*

- An expression \(e \) is **killed** at point \(p \) if one of its operands is defined at \(p \)
 - Sometimes called *kill site*

- An expression \(e \) is **available** at point \(p \) if every path leading to \(p \) contains a prior definition of \(e \) and \(e \) is not killed between that definition and \(p \)
Available Expression Sets

- For each block b, define
 - $\text{AVAIL}(b)$ – the set of expressions available on entry to b
 - $\text{NKILL}(b)$ – the set of expressions not killed in b
 - $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

- AVAIL(b) is the set
 \[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x))) \]

- preds(b) is the set of b’s predecessors in the control flow graph

- This gives a system of simultaneous equations – a dataflow problem
Computing Available Expressions

- **Big Picture**
 - Build control-flow graph
 - Calculate initial local data – DEF(b) and NKILL(b)
 - This only needs to be done once
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm
Computing DEF and NKILL (1)

- For each block b with operations o_1, o_2, \ldots, o_k

 - $KILLED = \emptyset$
 - $DEF(b) = \emptyset$

 for $i = k$ to 1

 - assume o_i is “x = y + z”
 - if ($y \notin KILLED$ and $z \notin KILLED$)

 add “y + z” to $DEF(b)$

 add x to $KILLED$

...

Computing DEF and NKILL (2)

- After computing DEF and KILLED for a block b,

 $\text{NKILL}(b) = \{\text{all expressions}\}$

 for each expression e

 for each variable $\nu \in e$

 if $\nu \in \text{KILLED}$ then

 $\text{NKILL}(b) = \text{NKILL}(b) - e$
Computing Available Expressions

- Once DEF(b) and NKILL(b) are computed for all blocks b

 Worklist = \{ all blocks b_i \}

 while (Worklist \neq \emptyset)
 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed
 Worklist = Worklist \cup successors(b)
Available Expressions

- AVAIL(b) – the set of expressions available on entry to b
- NKILL(b) – the set of exprs. not killed in b
- DEF(b) – the set of expressions defined in b and not subsequently killed in b
- AVAIL(b) = \(\bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \)
Dataflow analysis

- Available expressions are an example of a *dataflow analysis* problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

- All of these algorithms involve sets of facts about each basic block b
 - $\text{IN}(b)$ – facts true on entry to b
 - $\text{OUT}(b)$ – facts true on exit from b
 - $\text{GEN}(b)$ – facts created and not killed in b
 - $\text{KILL}(b)$ – facts killed in b

- These are related by the equation
 $$\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))$$

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

- A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined.

- Some uses:
 - Register allocation – only live variables need a register (or temporary)
 - Eliminating useless stores
 - Detecting uses of uninitialized variables
 - Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

- For each block b, define
 - use\[b\] = variable used in b before any def
 - def\[b\] = variable defined in b & not killed
 - in\[b\] = variables live on entry to b
 - out\[b\] = variables live on exit from b
Equations for Live Variables

- Given the preceding definitions, we have
 \[
 \text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
 \]
 \[
 \text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
 \]

- Algorithm
 - Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 - Update \(\text{in}, \text{out} \) until no change
Example (1 stmt per block)

- Code

 a := 0
 L: b := a+1
 c := c+b
 a := b*2
 if a < N goto L
 return c

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]
\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

1: \text{a} := 0

2: \text{b} := \text{a} + 1

3: \text{c} := \text{c} + \text{b}

4: \text{a} := \text{b} + 2

5: \text{a} < \text{N}

6: \text{return c}
Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...

- Sets
 - USED(b) – variables used in b before being defined in b
 - NOTDEF(b) – variables not defined in b
 - LIVE(b) – variables live on *exit* from b

- Equation
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup \left(\text{LIVE}(s) \cap \text{NOTDEF}(s) \right)
 \]
Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 - Forward problems – reverse postorder
 - Backward problems - postorder
Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

- Uses
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

- **Sets**
 - $\text{DEFOUT}(b)$ – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 - $\text{SURVIVED}(b)$ – set of all definitions not obscured by a definition in b
 - $\text{REACHES}(b)$ – set of definitions that reach b

- **Equation**

$$\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup \left(\text{REACHES}(p) \cap \text{SURVIVED}(p) \right)$$
Example: Very Busy Expressions

- An expression e is considered *very busy* at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

- Uses
 - Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

- Sets
 - USED(b) – expressions used in b before they are killed
 - KILLED(b) – expressions redefined in b before they are used
 - VERYBUSY(b) – expressions very busy on exit from b

- Equation
 \[VERYBUSY(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s)) \]
Using Dataflow Information

- A few examples of possible transformations...
In a statement s: $t := x \text{ op } y$, if $x \text{ op } y$ is *available* at s then it need not be recomputed.

Analysis: compute *reaching expressions* i.e., statements n: $v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y.
Classic CSE

- If \(x \) op \(y \) is defined at \(n \) and reaches \(s \)
 - Create new temporary \(w \)
 - Rewrite \(n \) as
 - \(n: w := x \) op \(y \)
 - \(n': v := w \)
 - Modify statement \(s \) to be
 - \(s: t := w \)

- (Rely on copy propagation to remove extra assignments if not really needed)
Constant Propagation

- Suppose we have
 - Statement d: t := c, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement d: t := z
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable \(z \) and increase need for registers or memory traffic
 - Not worth doing if only reason is to eliminate copies – let the register allocate deal with that
- But it can expose other optimizations, e.g.,

 \[
 a := y + z \\
 u := y \\
 c := u + z
 \]
 - After copy propagation we can recognize the common subexpression
Dead Code Elimination

- If we have an instruction
 \[s: a := b \text{ op } c \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated
 - Provided it has no implicit side effects that are visible (output, exceptions, etc.)
Dataflow...

- General framework for discovering facts about programs
 - Although not the only possible story
- And then: facts open opportunities for code improvement
- To be continued...
 - SSA in sections Thursday
 - CSE 501!