
11/27/2011 © 2002-11 Hal Perkins & UW CSE R-1

CSE 401 – Compilers

Dataflow Analysis

Hal Perkins

Winter 2011

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-2

Agenda

 Initial example: dataflow analysis for
common subexpression elimination

 Other analysis problems that work in
the same framework

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-3

Available Expressions
m = a + b

n = a + b

A

p = c + d
r = c + d

B
q = a + b

r = c + d

C

e = b + 18
s = a + b

u = e + f

D
e = a + 17
t = c + d

u = e + f

E

v = a + b

w = c + d

x = e + f

F

y = a + b

z = c + d

G

 Goal: use dataflow
analysis to find common
subexpressions

 Idea: calculate available
expressions at beginning
of each basic block

 Avoid re-evaluation of an
available expression – use
a copy operation
 Simple inside a single block;

more complex dataflow
analysis used across bocks

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-4

“Available” and Other Terms

 An expression e is defined at point p in the
CFG if its value is computed at p
 Sometimes called definition site

 An expression e is killed at point p if one of
its operands is defined at p
 Sometimes called kill site

 An expression e is available at point p if
every path leading to p contains a prior
definition of e and e is not killed between
that definition and p

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-5

Available Expression Sets

 For each block b, define

 AVAIL(b) – the set of expressions available
on entry to b

 NKILL(b) – the set of expressions not killed
in b

 DEF(b) – the set of expressions defined in
b and not subsequently killed in b

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-6

Computing Available
Expressions

 AVAIL(b) is the set

AVAIL(b) = xpreds(b) (DEF(x) 

 (AVAIL(x)  NKILL(x)))

 preds(b) is the set of b’s predecessors in
the control flow graph

 This gives a system of simultaneous
equations – a dataflow problem

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-7

Computing Available
Expressions

 Big Picture

 Build control-flow graph

 Calculate initial local data – DEF(b) and
NKILL(b)

 This only needs to be done once

 Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes

 Another fixed-point algorithm

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-8

Computing DEF and NKILL (1)

 For each block b with operations o1, o2, …, ok

KILLED = 

DEF(b) = 

for i = k to 1

 assume oi is “x = y + z”

 if (y  KILLED and z  KILLED)

 add “y + z” to DEF(b)

 add x to KILLED

…

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-9

Computing DEF and NKILL (2)

 After computing DEF and KILLED for a
block b,
NKILL(b) = { all expressions }

for each expression e

 for each variable v  e

 if v  KILLED then

 NKILL(b) = NKILL(b) - e

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-10

Computing Available
Expressions

 Once DEF(b) and NKILL(b) are
computed for all blocks b
Worklist = { all blocks bi }

while (Worklist  )

 remove a block b from Worklist

 recompute AVAIL(b)

 if AVAIL(b) changed

 Worklist = Worklist  successors(b)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-11

Available Expressions
m = a + b

n = a + b

A

p = c + d
r = c + d

B
q = a + b

r = c + d

C

e = b + 18
s = a + b

u = e + f

D
e = a + 17
t = c + d

u = e + f

E

v = a + b

w = c + d

x = e + f

F

y = a + b

z = c + d

G

 AVAIL(b) – the set of
expressions available
on entry to b

 NKILL(b) – the set of
exprs. not killed in b

 DEF(b) – the set of
expressions defined in
b and not subsequently
killed in b

 AVAIL(b) =
 xpreds(b) (DEF(x) 

 (AVAIL(x)  NKILL(x)))

Dataflow analysis

 Available expressions are an example of
a dataflow analysis problem

 Many similar problems can be
expressed in a similar framework

 Only the first part of the story – once
we’ve discovered facts, we then need to
use them to improve code

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-12

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-13

Characterizing Dataflow
Analysis

 All of these algorithms involve sets of facts
about each basic block b
 IN(b) – facts true on entry to b
 OUT(b) – facts true on exit from b
 GEN(b) – facts created and not killed in b
 KILL(b) – facts killed in b

 These are related by the equation
 OUT(b) = GEN(b)  (IN(b) – KILL(b)
 Solve this iteratively for all blocks
 Sometimes information propagates forward;

sometimes backward

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-14

Example:Live Variable Analysis

 A variable v is live at point p iff there is any
path from p to a use of v along which v is
not redefined

 Some uses:
 Register allocation – only live variables need a

register (or temporary)

 Eliminating useless stores

 Detecting uses of uninitialized variables

 Improve SSA construction – only need Φ-function
for variables that are live in a block (later)

Liveness Analysis Sets

 For each block b, define

 use[b] = variable used in b before any def

 def[b] = variable defined in b & not killed

 in[b] = variables live on entry to b

 out[b] = variables live on exit from b

11/27/2011 © 2002-09 Hal Perkins & UW CSE T-15

Equations for Live Variables

 Given the preceding definitions, we
have

 in[b] = use[b]  (out[b] – def[b])

 out[b] = ssucc[b] in[s]

 Algorithm

 Set in[b] = out[b] = 

 Update in, out until no change

11/27/2011 © 2002-09 Hal Perkins & UW CSE T-16

Example (1 stmt per block)

 Code

 a := 0

L: b := a+1

 c := c+b

 a := b*2

 if a < N goto L

 return c

11/27/2011 © 2002-09 Hal Perkins & UW CSE T-17

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b]  (out[b] – def[b])
out[b] = ssucc[b] in[s]

Calculation

11/27/2011 © 2002-09 Hal Perkins & UW CSE T-18

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b]  (out[b] – def[b])
out[b] = ssucc[b] in[s]

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-19

Equations for Live Variables v2

 Many problems have more than one
formulation. For example, Live Variables…

 Sets
 USED(b) – variables used in b before being

defined in b
 NOTDEF(b) – variables not defined in b
 LIVE(b) – variables live on exit from b

 Equation
 LIVE(b) = ssucc(b) USED(s) 
 (LIVE(s)  NOTDEF(s))

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-20

Efficiency of Dataflow Analysis

 The algorithms eventually terminate,
but the expected time needed can be
reduced by picking a good order to visit
nodes in the CFG

 Forward problems – reverse postorder

 Backward problems - postorder

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-21

Example: Reaching Definitions

 A definition d of some variable v
reaches operation i iff i reads the
value of v and there is a path from d
to i that does not define v

 Uses

 Find all of the possible definition points for
a variable in an expression

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-22

Equations for Reaching
Definitions

 Sets

 DEFOUT(b) – set of definitions in b that reach the
end of b (i.e., not subsequently redefined in b)

 SURVIVED(b) – set of all definitions not obscured
by a definition in b

 REACHES(b) – set of definitions that reach b

 Equation

 REACHES(b) = ppreds(b) DEFOUT(p) 

 (REACHES(p)  SURVIVED(p))

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-23

Example: Very Busy
Expressions

 An expression e is considered very busy
at some point p if e is evaluated and
used along every path that leaves p,
and evaluating e at p would produce
the same result as evaluating it at the
original locations

 Uses
 Code hoisting – move e to p (reduces code

size; no effect on execution time)

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-24

Equations for Very Busy
Expressions

 Sets
 USED(b) – expressions used in b before they are

killed

 KILLED(b) – expressions redefined in b before
they are used

 VERYBUSY(b) – expressions very busy on exit
from b

 Equation
 VERYBUSY(b) = ssucc(b) USED(s) 

 (VERYBUSY(s) - KILLED(s))

Using Dataflow Information

 A few examples of possible
transformations…

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-25

Classic Common-
Subexpression Elimination

 In a statement s: t := x op y, if x op y
is available at s then it need not be
recomputed

 Analysis: compute reaching expressions
i.e., statements n: v := x op y such that
the path from n to s does not compute
x op y or define x or y

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-26

Classic CSE

 If x op y is defined at n and reaches s
 Create new temporary w

 Rewrite n as
n: w := x op y

n’: v := w

 Modify statement s to be
s: t := w

 (Rely on copy propagation to remove extra
assignments if not really needed)

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-27

Constant Propagation

 Suppose we have

 Statement d: t := c, where c is constant

 Statement n that uses t

 If d reaches n and no other definitions
of t reach n, then rewrite n to use c
instead of t

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-28

Copy Propagation

 Similar to constant propagation

 Setup:
 Statement d: t := z

 Statement n uses t

 If d reaches n and no other definition of
t reaches n, and there is no definition of
z on any path from d to n, then rewrite
n to use z instead of t

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-29

Copy Propagation Tradeoffs

 Downside is that this can increase the
lifetime of variable z and increase need for
registers or memory traffic
 Not worth doing if only reason is to eliminate

copies – let the register allocate deal with that

 But it can expose other optimizations, e.g.,
a := y + z
u := y
c := u + z

 After copy propagation we can recognize the
common subexpression

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-30

Dead Code Elimination

 If we have an instruction

 s: a := b op c

 and a is not live-out after s, then s can
be eliminated

 Provided it has no implicit side effects that
are visible (output, exceptions, etc.)

11/27/2011 © 2002-09 Hal Perkins & UW CSE R-31

11/27/2011 © 2002-11 Hal Perkins & UW CSE R-32

Dataflow…

 General framework for discovering facts
about programs

 Although not the only possible story

 And then: facts open opportunities for
code improvement

 To be continued…

 SSA in sections Thursday

 CSE 501!

