
11/29/2011 © 2002-11 Hal Perkins & UW CSE N-1

CSE 401 – Compilers

Compiler Backend Survey

Hal Perkins

Autumn 2011

Agenda

 A survey of the major pieces of the back
end of the compiler
 Instruction selection

 Instruction scheduling

 Register allocation

 And three particularly neat algorithms
 Instruction selection by tree pattern matching

 Instruction list scheduling

 Register allocation by graph coloring

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-2

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-3

Compiler Organization
p
a
rs

e

sc
a
n

se
m

a
n
ti
cs

front end
o
p
t2

o
p
t1

o
p
tn

middle

is
n
tr
.
sc

h
e
d

in
st

r.
 s

e
le

ct

re
g
.

a
llo

c

back end

infrastructure – symbol tables, trees, graphs, etc

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-4

Big Picture

 Compiler consists of lots of fast stuff
followed by hard problems
 Scanner: O(n)

 Parser: O(n)

 Analysis & Optimization: ~ O(n log n)

 Instruction selection: fast or NP-Complete

 Instruction scheduling: NP-Complete

 Register allocation: NP-Complete

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-5

IR for Code Generation

 Assume a low-level RISC-like IR

 3 address, register-register instructions +
load/store

 r1 <- r2 op r3

 Could be tree structure or linear

 Expose as much detail as possible

 Assume “enough” (i.e., ) registers

 Invent new temporaries for intermediate results

 Map to actual registers later

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-6

Overview
Instruction Selection

 Map IR into assembly code

 Assume known storage layout and code
shape
 i.e., the optimization phases have already

done their thing

 Combine low-level IR operations into
machine instructions (take advantage of
addressing modes, etc.)

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-7

A Simple Low-Level IR (1)

 What’s important for us is to get a feel for the level
of detail involved; the specifics don’t matter as much

 Expressions:
 CONST(i) – integer constant i

 TEMP(t) – temporary t (i.e., register)

 BINOP(op,e1,e2) – application of op to e1,e2

 MEM(e) – contents of memory at address e
 Means value when used in an expression

 Means address when used on left side of assignment

 CALL(f,args) – application of function f to argument list args

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-8

Simple Low-Level IR (2)

 Statements
 MOVE(TEMP t, e) – evaluate e and store in temporary t

 MOVE(MEM(e1), e2) – evaluate e1 to yield address a;
evaluate e2 and store at a

 EXP(e) – evaluate expressions e and discard result

 SEQ(s1,s2) – execute s1 followed by s2

 NAME(n) – assembly language label n

 JUMP(e) – jump to e, which can be a NAME label, or more
compex (e.g., switch)

 CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to
label t, otherwise jump to f

 LABEL(n) – defines location of label n in the code

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-9

Low-Level IR Example (1)

 For a local variable at a known offset k
from the frame pointer fp

 Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

 Tree
MEM

+

TEMP fp CONST k

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-10

Low-Level IR Example (2)

 For an array element e[k], where each
element takes up w storage locations

MEM

+

MEM *

e k CONST

w

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-11

Instruction Selection Issues

 Given the low-level IR, there are many
possible code sequences that
implement it correctly
 e.g. to set eax to 0 on x86

 mov eax,0 xor eax,eax

 sub eax,eax imul eax,0

 Many machine instructions do several
things at once – e.g., register arithmetic
and effective address calculation

Implementation

 Goal: find a sequence of machine
instructions that perform the computation
described by the IR code

 Idea: Describe machine instructions using
same low-level IR used for program, then

 Use tree pattern matching to pick machine
instructions that match fragments of the
program IR tree and use a combination of
these up to cover the whole IR code

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-12

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-13

An Example Target Machine (1)

 Arithmetic Instructions

 (unnamed) ri TEMP

 ADD ri <- rj + rk

 MUL ri <- rj * rk

 SUB and DIV are similar

+

*

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-14

 Immediate Instructons

 ADDI ri <- rj + c

 SUBI ri <- rj - c

An Example Target Machine (2)

+

CONST

+

CONST

CONST

-

CONST

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-15

 Load

 LOAD ri <- M[rj + c]

An Example Target Machine (3)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-16

 Store

 STORE M[rj + c] <- ri

An Example Target Machine (4)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-17

Tree Pattern Matching (1)

 Goal: Tile the low-level tree with
operation (instruction) trees

 A tiling is a collection of <node,op>
pairs

 node is a node in the tree

 op is an operation tree

 <node,op> means that op could
implement the subtree at node

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-18

Tree Pattern Matching (2)

 A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node

 If <node,op> is in the tiling, then node is also
covered by a leaf in another operation tree in the
tiling – unless it is the root

 Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

Example – Tree for a[i]:=x

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-19

MEM

MOVE

MEM

+

CONST x FP

+

MEM

+

CONST a FP

*

CONST 4 TEMP i

Generating Tilings

 Two common algorithms

 Maximal munch:

 Top-down tree walk.

 Find largest tile that fits each node

 Dynamic programming:

 Assign costs to nodes in tree = cost of node +
subtrees

 Try all possible combinations bottom-up and
pick cheapest

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-20

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-21

Generating Code

 Given a tiled tree, to generate code

 Postorder treewalk; node-dependant order
for children

 Emit code sequences corresponding to tiles
in order

 Connect tiles by using same register name
to tie boundaries together

Overview
Instruction Scheduling

 Reorder instructions to minimize execution
time
 hide latencies – processor function units,

memory/cache stalls

 Originally invented for supercomputers (60s)

 Now important everywhere
 Even non-RISC machines, i.e., x86

 Even if processor reorders on the fly

 Assume fixed program at this point

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-22

11/29/2011 © 2002-11 Hal Perkins & UW CSE O-23

Latencies for a Simple
Example Machine

Operation Cycles

LOAD 3

STORE 3

ADD 1

MULT 2

SHIFT 1

BRANCH 0 TO 8

11/29/2011 © 2002-11 Hal Perkins & UW CSE O-24

Example: w = w*2*x*y*z;

 Simple schedule
1 LOAD r1 <- w

4 ADD r1 <- r1,r1

5 LOAD r2 <- x

8 MULT r1 <- r1,r2

9 LOAD r2 <- y

12 MULT r1 <- r1,r2

13 LOAD r2 <- z

16 MULT r1 <- r1,r2

18 STORE w <- r1

21 r1 free

 2 registers, 20 cycles

 Loads early
1 LOAD r1 <- w

2 LOAD r2 <- x

3 LOAD r3 <- y

4 ADD r1 <- r1,r1

5 MULT r1 <- r1,r2

6 LOAD r2 <- z

7 MULT r1 <- r1,r3

9 MULT r1 <- r1,r2

11 STORE w <- r1

14 r1 is free

 3 registers, 13 cycles

Algorithm Overview

 Build a precedence graph P of instructions,
labeled with priorities (usually number of
cycles on critical path to the end)

 Use list scheduling to construct a
schedule, one cycle at a time
 At each cycle

 Chose a ready operation and schedule it
 Update ready queue

 Rename registers to avoid false
dependencies and conflicts

11/29/2011 © 2002-11 Hal Perkins & UW CSE O-25

11/29/2011 © 2002-11 Hal Perkins & UW CSE O-26

Precedence Graph

 Nodes n are operations

 Attributes of each node

 type – kind of operation

 delay – latency

 If node n2 uses the result of node n1,
there is an edge e = (n1,n2) in the
graph

11/29/2011 © 2002-11 Hal Perkins & UW CSE O-27

Example

 Code

a LOAD r1 <- w

b ADD r1 <- r1,r1

c LOAD r2 <- x

d MULT r1 <- r1,r2

e LOAD r2 <- y

f MULT r1 <- r1,r2

g LOAD r2 <- z

h MULT r1 <- r1,r2

i STORE w <- r1

11/29/2011 © 2002-11 Hal Perkins & UW CSE O-28

Forward vs Backwards

 Backward list scheduling
 Work from the root to the leaves

 Schedules instructions from end to beginning of
the block

 In practice, compilers try both and pick the
result that minimizes costs
 Little extra expense since the precedence graph

and other information can be reused

 Different directions win in different cases

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-29

Overview
Register Allocation

 Map values to actual registers

 Previous phases change need for registers

 Add code to spill values to temporaries
as needed, etc.

 Usually worth doing another pass of
instruction scheduling afterwards if spill
code inserted

Register Allocation by Graph
Coloring

 How to convert the infinite sequence of
temporary data references, t1, t2, … into finite
assignment register numbers $8, $9, …, $25

 Goal: Use available registers with minimum
spilling

 Problem: Minimizing the number of registers is
NP-complete … it is equivalent to chromatic
number – minimum colors to color nodes of
graph so no edge connects same color

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-30

Begin With Data Flow Graph

 procedure-wide register allocation

 only live variables require register storage

 two variables(values) interfere when their
live ranges overlap

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further

down the control-flow graph; otherwise it is dead

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-31

Live Variable Analysis

a := read();

b := read();

c := read();

d := a + b*c;

d < 10

e := c+8;

print(c);

f := 10;

e := f + d;

print(f);

print(e);

f

c

e

e

a

b

d

a := read();

b := read();

c := read();

d := a + b*c;

if (d < 10) then

 e := c+8;

 print(c);

else

 f := 10;

 e := f + d;

 print(f);

fi

print(e);

Register Interference Graph

a := read();

b := read();

c := read();

d := a + b*c;

d < 10

e := c+8;

print(c);

f := 10;

e := f + d;

print(f);

print(e);

f

c

e

e

a

b

d

a b

e

d c

f

Graph Coloring

 NP complete problem

 Heuristic: color easy nodes last
 find node N with lowest degree
 remove N from the graph
 color the simplified graph
 set color of N to the first color that is not used

by any of N ’s neighbors

 Basics due to Chaitin (1982), refined by
Briggs (1992)

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-34

Apply Heuristic

a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-35

Apply Heuristic

a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-36

Apply Heuristic

a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-37

Continued

 a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-38

Continued

 a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-39

Continued

 a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-40

Continued

 a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-41

Continued

 a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-42

Continued

 a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-43

Continued

 a b

e

d c

f

a b

e

d c

f

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-44

Final Assignment

 a b

e

d c

f

a := read();

b := read();

c := read();

d := a + b*c;

if (d < 10) then

 e := c+8;

 print(c);

else

 f := 10;

 e := f + d;

 print(f);

fi

print(e); 11/29/2011 N-45

Some Graph Coloring Issues

 May run out of registers

 Solution: insert spill code and reallocate

 Special-purpose and dedicated registers

 Examples: function return register, function
argument registers, registers required for
particular instructions

 Solution: “pre-color” some nodes to force
allocation to a particular register

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-46

Exercise

given that a and b are live on entry and dead on exit,

and that x and y are live on exit:

 (a) construct the register interference graph

 (b) color the graph; how many registers are needed?

{ int tmp_2ab = 2*a*b;

 int tmp_aa = a*a;

 int tmp_bb = b*b;

 x := tmp_aa + tmp_2ab + tmp_bb;

 y := tmp_aa - tmp_2ab + tmp_bb;

}

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-47

4 Registers Needed

a tmp_2ab

tmp_bb

x y

tmp_aa b

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-48

