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Agenda 

 A survey of the major pieces of the back 
end of the compiler 
 Instruction selection 

 Instruction scheduling 

 Register allocation 

 And three particularly neat algorithms 
 Instruction selection by tree pattern matching 

 Instruction list scheduling 

 Register allocation by graph coloring 
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Big Picture 

 Compiler consists of lots of fast stuff 
followed by hard problems 
 Scanner: O(n) 

 Parser: O(n) 

 Analysis & Optimization:  ~ O(n log n) 

 Instruction selection: fast or NP-Complete 

 Instruction scheduling: NP-Complete 

 Register allocation: NP-Complete 
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IR for Code Generation 

 Assume a low-level RISC-like IR 

 3 address, register-register instructions + 
load/store 

  r1 <- r2 op r3 

 Could be tree structure or linear 

 Expose as much detail as possible 

 Assume “enough” (i.e., ) registers 

 Invent new temporaries for intermediate results 

 Map to actual registers later 
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Overview 
Instruction Selection 

 Map IR into assembly code 

 Assume known storage layout and code 
shape 
 i.e., the optimization phases have already 

done their thing 

 Combine low-level IR operations into 
machine instructions (take advantage of 
addressing modes, etc.) 
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A Simple Low-Level IR (1) 

 What’s important for us is to get a feel for the level 
of detail involved; the specifics don’t matter as much 

 Expressions: 
 CONST(i) – integer constant i 

 TEMP(t) – temporary t (i.e., register) 

 BINOP(op,e1,e2) – application of op to e1,e2 

 MEM(e) – contents of memory at address e 
 Means value when used in an expression 

 Means address when used on left side of assignment 

 CALL(f,args) – application of function f to argument list args 
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Simple Low-Level IR (2) 

 Statements 
 MOVE(TEMP t, e) – evaluate e and store in temporary t 

 MOVE(MEM(e1), e2) – evaluate e1 to yield address a; 
evaluate e2 and store at a 

 EXP(e) – evaluate expressions e and discard result 

 SEQ(s1,s2) – execute s1 followed by s2 

 NAME(n) – assembly language label n 

 JUMP(e) – jump to e, which can be a NAME label, or more 
compex (e.g., switch) 

 CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to 
label t, otherwise jump to f 

 LABEL(n) – defines location of label n in the code 
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Low-Level IR Example (1) 

 For a local variable at a known offset k 
from the frame pointer fp 

 Linear 

MEM(BINOP(PLUS, TEMP fp, CONST k)) 

 Tree 
MEM 

+ 

TEMP fp CONST k 
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Low-Level IR Example (2) 

 For an array element e[k], where each 
element takes up w storage locations 

MEM 

+ 

MEM * 

e k CONST 

w 
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Instruction Selection Issues 

 Given the low-level IR, there are many 
possible code sequences that 
implement it correctly 
 e.g. to set eax to 0 on x86 

 mov  eax,0  xor  eax,eax 

 sub   eax,eax imul  eax,0 

 Many machine instructions do several 
things at once – e.g., register arithmetic 
and effective address calculation 



Implementation 

 Goal: find a sequence of machine 
instructions that perform the computation 
described by the IR code 

 Idea: Describe machine instructions using 
same low-level IR used for program, then 

 Use tree pattern matching to pick machine 
instructions that match fragments of the 
program IR tree and use a combination of 
these up to cover the whole IR code 
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An Example Target Machine (1) 

 Arithmetic Instructions 

 (unnamed) ri   TEMP 

 ADD ri <- rj + rk 

 

 MUL ri <- rj * rk 

 

 SUB and DIV are similar 

+ 

* 
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 Immediate Instructons 

 ADDI ri <- rj + c 

 

 

 

 SUBI ri <- rj - c 

An Example Target Machine (2) 

+ 

CONST 

+ 

CONST 

CONST 

- 

CONST 
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 Load 

 LOAD  ri <- M[rj + c] 

An Example Target Machine (3) 

+ 

CONST 

+ 

CONST 

CONST 

MEM MEM MEM MEM 
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 Store 

 STORE  M[rj + c] <- ri 

An Example Target Machine (4) 

+ 

CONST 

+ 

CONST 

CONST 

MEM MEM MEM MEM 

MOVE MOVE MOVE MOVE 
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Tree Pattern Matching (1) 

 Goal: Tile the low-level tree with 
operation (instruction) trees 

 A tiling is a collection of <node,op> 
pairs 

 node is a node in the tree 

 op is an operation tree 

 <node,op> means that op could 
implement the subtree at node 



11/29/2011 © 2002-11 Hal Perkins & UW CSE N-18 

Tree Pattern Matching  (2) 

 A tiling “implements” a tree if it covers every 
node in the tree and the overlap between any 
two tiles (trees) is limited to a single node 

 If <node,op> is in the tiling, then node is also 
covered by a leaf in another operation tree in the 
tiling – unless it is the root 

 Where two operation trees meet, they must be 
compatible (i.e., expect the same value in the 
same location) 



Example – Tree for a[i]:=x 
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MEM 

MOVE 

MEM 

+ 

CONST x FP 

+ 

MEM 

+ 

CONST a FP 

* 

CONST 4 TEMP i 



Generating Tilings 

 Two common algorithms 

 Maximal munch:  

 Top-down tree walk.   

 Find largest tile that fits each node 

 Dynamic programming: 

 Assign costs to nodes in tree = cost of node + 
subtrees 

 Try all possible combinations bottom-up and 
pick cheapest 
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Generating Code 

 Given a tiled tree, to generate code 

 Postorder treewalk; node-dependant order 
for children 

 Emit code sequences corresponding to tiles 
in order 

 Connect tiles by using same register name 
to tie boundaries together 



Overview 
Instruction Scheduling  

 Reorder instructions to minimize execution 
time 
 hide latencies – processor function units, 

memory/cache stalls 

 Originally invented for supercomputers (60s) 

 Now important everywhere 
 Even non-RISC machines, i.e., x86 

 Even if processor reorders on the fly 

 Assume fixed program at this point 
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Latencies for a Simple 
Example Machine 

Operation Cycles 

LOAD 3 

STORE 3 

ADD 1 

MULT 2 

SHIFT 1 

BRANCH 0 TO 8 
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Example:  w = w*2*x*y*z; 

 Simple schedule 
1  LOAD   r1 <- w 

4  ADD  r1 <- r1,r1 

5  LOAD r2 <- x 

8  MULT r1 <- r1,r2 

9  LOAD  r2 <- y 

12 MULT r1 <- r1,r2 

13 LOAD r2 <- z 

16 MULT r1 <- r1,r2 

18 STORE  w <- r1 

21 r1 free 

  2 registers, 20 cycles 

 Loads early 
1 LOAD r1 <- w 

2 LOAD r2 <- x 

3 LOAD r3 <- y 

4 ADD r1 <- r1,r1 

5 MULT r1 <- r1,r2 

6 LOAD r2 <- z 

7 MULT r1 <- r1,r3 

9 MULT r1 <- r1,r2 

11 STORE w <- r1 

14 r1 is free 

  3 registers, 13 cycles 



Algorithm Overview 

 Build a precedence graph P of instructions, 
labeled with priorities (usually number of 
cycles on critical path to the end) 

 Use list scheduling to construct a 
schedule, one cycle at a time 
 At each cycle 

 Chose a ready operation and schedule it 
 Update ready queue 

 Rename registers to avoid false 
dependencies and conflicts 
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Precedence Graph 

 Nodes n  are operations  

 Attributes of each node  

 type – kind of operation 

 delay – latency  

 If node n2 uses the result of node n1, 
there is an edge e = (n1,n2) in the 
graph 
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Example 

 Code 

a  LOAD   r1 <- w 

b  ADD  r1 <- r1,r1 

c  LOAD r2 <- x 

d  MULT r1 <- r1,r2 

e  LOAD  r2 <- y 

f   MULT r1 <- r1,r2 

g  LOAD r2 <- z 

h  MULT r1 <- r1,r2 

i   STORE  w <- r1 
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Forward vs Backwards 

 Backward list scheduling 
 Work from the root to the leaves 

 Schedules instructions from end to beginning of 
the block 

 In practice, compilers try both and pick the 
result that minimizes costs 
 Little extra expense since the precedence graph 

and other information can be reused 

 Different directions win in different cases 
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Overview 
Register Allocation 

 Map values to actual registers 

 Previous phases change need for registers 

 Add code to spill values to temporaries 
as needed, etc. 

 Usually worth doing another pass of 
instruction scheduling afterwards if spill 
code inserted 

 



Register Allocation by Graph 
Coloring 

 How to convert the infinite sequence of 
temporary data references, t1, t2, … into finite 
assignment register numbers $8, $9, …, $25 

 Goal: Use available registers with minimum 
spilling 

 Problem: Minimizing the number of registers is 
NP-complete … it is equivalent to chromatic 
number – minimum colors to color nodes of 
graph so no edge connects same color 
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Begin With Data Flow Graph 

 procedure-wide register allocation 

 only live variables require register storage 

 

 

 

 

 two variables(values) interfere when their 
live ranges overlap 

dataflow analysis: a variable is live at node N if 
the value it holds is used on some path further 

down the control-flow graph; otherwise it is dead 
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Live Variable Analysis 

  
a := read(); 

b := read(); 

c := read(); 

d := a + b*c; 

d < 10 

e := c+8; 

print(c); 

f := 10; 

e := f + d; 

print(f); 

print(e); 

f 

c 

e 

e 

a 

b 

d 

a := read(); 

b := read(); 

c := read(); 

d := a + b*c; 

if (d < 10 ) then 

   e := c+8; 

   print(c); 

else 

   f := 10; 

   e := f + d; 

   print(f); 

fi 

print(e); 



Register Interference Graph 

  
a := read(); 

b := read(); 

c := read(); 

d := a + b*c; 

d < 10 

e := c+8; 

print(c); 

f := 10; 

e := f + d; 

print(f); 

print(e); 

f 

c 

e 

e 

a 

b 

d 

a b 

e 

d c 

f 



Graph Coloring 

 NP complete problem 
 

 Heuristic: color easy nodes last 
 find node N with lowest degree 
 remove N from the graph 
 color the simplified graph  
 set color of N to the first color that is not used 

by any of N ’s neighbors 

 Basics due to Chaitin (1982), refined by 
Briggs (1992) 

 

a b 

e 

d c 

f 
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Apply Heuristic 

  
a b 

e 

d c 

f 

a b 

e 

d c 

f 
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Apply Heuristic 

  
a b 

e 

d c 

f 

a b 

e 

d c 

f 

a b 

e 

d c 

f 

11/29/2011 © 2002-11 Hal Perkins & UW CSE N-36 



Apply Heuristic 
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Final Assignment 

  a b 

e 

d c 

f 

a := read(); 

b := read(); 

c := read(); 

d := a + b*c; 

if (d < 10 ) then 

   e := c+8; 

   print(c); 

else 

   f := 10; 

   e := f + d; 

   print(f); 

fi 

print(e); 11/29/2011 N-45 



Some Graph Coloring Issues 

 May run out of registers 

 Solution: insert spill code and reallocate 

 Special-purpose and dedicated registers 

 Examples: function return register, function 
argument registers, registers required for 
particular instructions 

 Solution: “pre-color” some nodes to force 
allocation to a particular register 
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Exercise 

 

 

 

 

 

 

given that a and b are live on entry and dead on exit, 

and that x and y are live on exit: 

  (a) construct the register interference graph 

  (b) color the graph; how many registers are needed? 

{  int tmp_2ab = 2*a*b; 

   int tmp_aa = a*a; 

   int tmp_bb = b*b; 
 

   x := tmp_aa + tmp_2ab + tmp_bb; 

   y := tmp_aa - tmp_2ab + tmp_bb; 

} 
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4 Registers Needed 

  
a tmp_2ab 

tmp_bb 

x y 

tmp_aa b 
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