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CSE 401 – Compilers 

Survey of Code Optimizations 

Hal Perkins 

Autumn 2011 



Agenda 

 Survey some code “optimizations” 
(improvements) 

 Get a feel for what’s possible 

 Some organizing concepts 

 Basic blocks 

 Control-flow and dataflow graph 
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Optimizations 

 Use added passes to identify inefficiencies in 
intermediate or target code  

 Replace with equivalent (“has the same externally 
visible behavior”) but better sequences  

 Target-independent optimizations best done on IL 
code  

 Target-dependent optimizations best done on 
target code  

 “Optimize” overly optimistic: “usually improve” is 
generally more accurate 
 And “clever” programmers can outwit you! 
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An example 

x = a[i] + b[2];  

c[i] = x - 5;  

t1 = *(fp + ioffset);  // i  

t2 = t1 * 4;  

t3 = fp + t2;  

t4 = *(t3 + aoffset);  // a[i]  

t5 = 2;  

t6 = t5 * 4;  

t7 = fp + t6;  

t8 = *(t7 + boffset);  // b[2]  

t9 = t4 + t8; *(fp + xoffset) = t9; // x = … 

t10 = *(fp + xoffset); // x  

t11 = 5;  

t12 = t10 - t11;  

t13 = *(fp + ioffset); // i  

t14 = t13 * 4;  

t15 = fp + t14;  

*(t15 + coffset) = t12; // c[i] := … 
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Kinds of optimizations 

 peephole: look at adjacent instructions  
 local: look at straight-line sequence of statements  
 intraprocedural: look at whole procedure 

 Commonly called “global” 

 interprocedural: look across procedures 
 “whole program” analysis 
 “link time optimization” is a version of this 

 Larger scope => usually better optimization but 
more cost and complexity 
 Analysis is often less precise because of more 

possibilities 
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Peephole Optimization 

 After target code generation, look at 
adjacent instructions (a “peephole” on 
the code stream)  

 try to replace adjacent instructions with 
something faster  

 

 

 

sw $8,  12($fp)  

lw $12, 12($fp) 

 

sw $8,  12($fp)  

mv $12, $8 
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More Examples: 68K 

 

 

 

 

 

 

 

 One way to do complex instruction selection 

sub sp, 4, sp  

mov r1, 0(sp)  
mov r1, -(sp)  

 

mov 12(fp), r1  

add r1, 1, r1  

mov r1, 12(fp) 

inc 12(fp) 
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Peephole Optimization of 
Jumps 

 Eliminate jumps to jumps 
 Eliminate jumps after conditional branches  
 “Adjacent” instructions = “adjacent in control 

flow”  
  Source code  

if (a < b) {  

   if (c < d) { // do nothing 

   } else { 

      stmt1;  

   }  

 } else {  

    stmt2; 

 }  
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Algebraic Simplification 

 “constant folding”, “strength reduction”  

 z = 3 + 4;  

 z = x + 0;  

 z = x * 1;  

 z = x * 2;  

 z = x * 8;  

 z = x / 8;  

 

 double x, y, z;  

 z = (x + y) - y;  

 Can be done by peephole optimizer, or by code generator 

 Why do these examples happen? 
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Local Optimizations 

 Analysis and optimizations within a basic block  

 Basic block: straight-line sequence of 
statements  
 no control flow into or out of middle of sequence  

 Better than peephole  

 Not too hard to implement  

 

 Machine-independent, if done on intermediate 
code 
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Local Constant Propagation 

 If variable assigned a constant, replace 
downstream uses of the variable with 
constant  

 Can enable more constant folding  

 Code; unoptimized intermediate code:  

final int count = 10;  

...  

x = count * 5;  

y = x ^ 3;  

 

t1 = 10;  

t2 = 5;  

t3 = t1 * t2;  

x = t3;  

t4 = x;  

t5 = 3;  

t6 = exp(t4, t5);  

y = t6;  
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Local Dead Assignment 
Elimination 

 If l.h.s. of assignment never referenced again before 
being overwritten, then can delete assignment  

 Why would this happen?   
Clean-up after previous optimizations, often 

 

 

final int count = 10;  

...  

x = count * 5;  

y = x ^ 3;  

x = 7; 

 

t1 = 10;  

t2 = 5;  

t3 = 50;  

x = 50;  

t4 = 50;  

t5 = 3;  

t6 = 125000;  

y = 125000;  

x = 7;  

Intermediate code after constant propagation 
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Local Common Subexpression 
Elimination 

 Avoid repeating the same calculation  

 Eliminate redundant loads 

 Keep track of available expressions 

 
 

... a[i] + b[i] ... 

 

t1 = *(fp + ioffset);  

t2 = t1 * 4;  

t3 = fp + t2;  

t4 = *(t3 + aoffset);  

t5 = *(fp + ioffset);  

t6 = t5 * 4;  

t7 = fp + t6;  

t8 = *(t7 + boffset);  

t9 = t4 + t8; 
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Intraprocedural optimizations 

 Enlarge scope of analysis to whole 
procedure  
 more opportunities for optimization  
 have to deal with branches, merges, and loops  

 Can do constant propagation, common 
subexpression elimination, etc. at “global” 
level  

 Can do new things, e.g. loop optimizations  
 Optimizing compilers usually work at this 

level  (-O2) 
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Code Motion 

 Goal: move loop-invariant calculations out of loops  

 Can do at source level or at intermediate code level 

for (i = 0; i < 10; i = i+1) {  

  a[i] = a[i] + b[j];  

  z = z + 10000;  

}  
 

t1 = b[j];  

t2 = 10000;  

for (i = 0; i < 10; i = i+1) {  

  a[i] = a[i] + t1;  

  z = z + t2;  

}  

 
N-15 



Code Motion at IL 
for (i = 0; i < 10; i = i+1) {  

  a[i] = b[j];  

}  

 *(fp + ioffset) = 0;  

label top;  

  t0 = *(fp + ioffset);  

  iffalse (t0 < 10) goto done;  

  t1 = *(fp + joffset);  

  t2 = t1 * 4;  

  t3 = fp + t2;  

  t4 = *(t3 + boffset);  

  t5 = *(fp + ioffset);  

  t6 = t5 * 4;  

  t7 = fp + t6; *(t7 + aoffset) = t4;  

  t9 = *(fp + ioffset);  

  t10 = t9 + 1;  

  *(fp + ioffset) = t10;  

  goto top;  

label done; 

Unoptimized 
intermediate 

code 

N-16 



Loop Induction Variable 
Elimination 

 For-loop index is induction variable  
 incremented each time around loop  
 offsets & pointers calculated from it  

 If used only to index arrays, can rewrite with pointers  
 compute initial offsets/pointers before loop  
 increment offsets/pointers each time around loop  
 no expensive scaling in loop 
 can then do loop-invariant code motion  
for (i = 0; i < 10; i = i+1) {  

  a[i] = a[i] + x;  

}  

 => transformed to 
for (p = &a[0]; p < &a[10]; p = p+4) {  

  *p = *p + x;  

}  
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Interprocedural Optimization 

 Expand scope of analysis to procedures 
calling each other  

 Can do local & intraprocedural 
optimizations at larger scope  

 Can do new optimizations, e.g. inlining  
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Inlining: replace call with body 

 Replace procedure call with body of called procedure  
 Source:  

final double pi = 3.1415927;  

double circle_area(double radius) {  

   return pi * (radius * radius);  

}  

...  

double r = 5.0;  

...  

double a = circle_area(r);  

 After inlining:  
...  

double r = 5.0;  

...  

double a = pi * r * r;  

 (Then what?) 
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Intraprocedural (Global) 
Optimizations 

 Need a convenient representation of procedure body 
 Control flow graph (CFG) captures flow of control  

 nodes are IL statements, or whole basic blocks  
 edges represent (all possible) control flow  
 node with multiple successors = branch/switch  
 node with multiple predecessors = merge  
 loop in graph = loop  

 Data flow graph (DFG) capture flow of data, e.g. def/use 
chains:  
 nodes are def(inition)s and uses  
 edge from def to use  
 a def can reach multiple uses  
 a use can have multiple reaching defs 
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Analysis and Transformation 

 Each optimization is made up of  

 some number of analyses  

 followed by a transformation  

 Analyze CFG and/or DFG by propagating info forward or 
backward along CFG and/or DFG edges  

 edges called program points  

 merges in graph require combining info  

 loops in graph require iterative approximation  

 Perform improving transformations based on info computed  

 have to wait until any iterative approximation has converged  

 Analysis must be conservative/safe/sound so that 
transformations preserve program behavior 
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Example: Constant Propagation, Folding 

 Can use either the CFG or the DFG  

 CFG analysis info: table mapping each variable in scope to one of:  

 a particular constant  

 NonConstant  

 Undefined  

 Transformation at each instruction:  

 if reference a variable that the table maps to a constant,  then 
replace with that constant (constant propagation)  

 if r.h.s. expression involves only constants, and has no side-
effects, then perform operation at compile-time and replace 
r.h.s. with constant result (constant folding)  

 For best analysis, do constant folding as part of analysis, to learn 
all constants in one pass 
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Merging data flow analysis 
info 

 Constraint: merge results must be sound  
 if something is believed true after the merge, then it 

must be true no matter which path we took into the  
merge  

 only things true along all predecessors are true after 
the merge  

 To merge two maps of constant information, build 
map by merging corresponding variable 
information  

 To merge information about two variable 
 if one is Undefined, keep the other  
 if both same constant, keep that constant  
 otherwise, degenerate to NonConstant 
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Example Merges 

  

int x 

x := 5 x := 5 

x ==? 

int x 

x := 5 x := 4 

x ==? 

int x 

x := 5 

x ==? 
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Example Merges 

  
int x 

x := 5 

x ==? 

int x 

x := 5 x := f(…) 

x ==? 
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How to analyze loops 

i = 0;  

x = 10;  

y = 20;  

while (...) {  

  // what’s true here?  

  ...  

  i = i + 1;  

  y = 30;  

}  

// what’s true here?  

... x ... i ... y ...  

 Safe but imprecise: 
forget everything 
when we enter or 
exit a loop  

 Precise but unsafe: 
keep everything 
when we enter or 
exit a loop  

 Can we do better?  
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Loop Terminology  

  

preheader 

entry edge 

head 

back  

edge 

tail 

loop 

exit edge 

      

11/22/2011 N-27 



Optimistic Iterative Analysis 

 Assuming information at loop head is same as 
information at loop entry  

 Then analyze loop body, computing information at 
back edge  

 Merge information at loop back edge and loop 
entry  

 Test if merged information is same as original 
assumption  
 If so, then we’re done  
 If not, then replace previous assumption with merged 

information, 
 and go back to analysis of loop body 
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Example 

i = 0;  

x = 10;  

y = 20;  

while (...) {  

   // what’s true here?  

   ...  

   i = i + 1;  

   y = 30; }  

// what’s true here?  

... x ... i ... y ...  
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Why does this work? 

 Why are the results always conservative?  
 Because if the algorithm stops, then  

 the loop head info is at least as conservative as both 
the  loop entry info and the loop back edge info  

 the analysis within the loop body is conservative, given 
the  assumption that the loop head info is conservative  

 Why does the algorithm terminate?  
 It might not!  
 But it does if:  

 there are only a finite number of times we could merge  
values together without reaching the worst case info 
(e.g. NotConstant) 
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More interprocedural analyses 

 Needed to support interprocedural 
optimizations 

 Alias analysis 
 Different references referring to the same memory 

locations 
 may-alias vs. must-alias, context- and flow-

sensitivity 

 Escape analysis (pointers that are live on exit 
from procedures), shape analysis (static 
analysis of the properties of dynamic data 
structures), … 
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Supporting representations 
include 

 Call graph 

 Program dependence graph 

 … 
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Summary 

 Enlarging scope of analysis yields better results  
 today, most optimizing compilers work at the 

intraprocedural (a\k\a global) level 
 Changing though, e.g., gcc LTO (link-time optimization)  

 Optimizations organized as collections of 
passes, each rewriting IL in place into better 
version  

 Presence of optimizations makes other parts of 
compiler (e.g. intermediate and target code 
generation) easier to write 
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