
11/22/2011 © 2002-11 Hal Perkins & UW CSE N-1

CSE 401 – Compilers

Survey of Code Optimizations

Hal Perkins

Autumn 2011

Agenda

 Survey some code “optimizations”
(improvements)

 Get a feel for what’s possible

 Some organizing concepts

 Basic blocks

 Control-flow and dataflow graph

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-2

Optimizations

 Use added passes to identify inefficiencies in
intermediate or target code

 Replace with equivalent (“has the same externally
visible behavior”) but better sequences

 Target-independent optimizations best done on IL
code

 Target-dependent optimizations best done on
target code

 “Optimize” overly optimistic: “usually improve” is
generally more accurate
 And “clever” programmers can outwit you!

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-3

An example

x = a[i] + b[2];

c[i] = x - 5;

t1 = *(fp + ioffset); // i

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset); // a[i]

t5 = 2;

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8; *(fp + xoffset) = t9; // x = …

t10 = *(fp + xoffset); // x

t11 = 5;

t12 = t10 - t11;

t13 = *(fp + ioffset); // i

t14 = t13 * 4;

t15 = fp + t14;

*(t15 + coffset) = t12; // c[i] := …

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-4

Kinds of optimizations

 peephole: look at adjacent instructions
 local: look at straight-line sequence of statements
 intraprocedural: look at whole procedure

 Commonly called “global”

 interprocedural: look across procedures
 “whole program” analysis
 “link time optimization” is a version of this

 Larger scope => usually better optimization but
more cost and complexity
 Analysis is often less precise because of more

possibilities

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-5

Peephole Optimization

 After target code generation, look at
adjacent instructions (a “peephole” on
the code stream)

 try to replace adjacent instructions with
something faster

sw $8, 12($fp)

lw $12, 12($fp)

sw $8, 12($fp)

mv $12, $8

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-6

More Examples: 68K

 One way to do complex instruction selection

sub sp, 4, sp

mov r1, 0(sp)
mov r1, -(sp)

mov 12(fp), r1

add r1, 1, r1

mov r1, 12(fp)

inc 12(fp)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-7

Peephole Optimization of
Jumps

 Eliminate jumps to jumps
 Eliminate jumps after conditional branches
 “Adjacent” instructions = “adjacent in control

flow”
 Source code

if (a < b) {

 if (c < d) { // do nothing

 } else {

 stmt1;

 }

 } else {

 stmt2;

 }

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-8

Algebraic Simplification

 “constant folding”, “strength reduction”

 z = 3 + 4;

 z = x + 0;

 z = x * 1;

 z = x * 2;

 z = x * 8;

 z = x / 8;

 double x, y, z;

 z = (x + y) - y;

 Can be done by peephole optimizer, or by code generator

 Why do these examples happen?
11/22/2011 © 2002-11 Hal Perkins & UW CSE N-9

Local Optimizations

 Analysis and optimizations within a basic block

 Basic block: straight-line sequence of
statements
 no control flow into or out of middle of sequence

 Better than peephole

 Not too hard to implement

 Machine-independent, if done on intermediate
code

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-10

Local Constant Propagation

 If variable assigned a constant, replace
downstream uses of the variable with
constant

 Can enable more constant folding

 Code; unoptimized intermediate code:

final int count = 10;

...

x = count * 5;

y = x ^ 3;

t1 = 10;

t2 = 5;

t3 = t1 * t2;

x = t3;

t4 = x;

t5 = 3;

t6 = exp(t4, t5);

y = t6;

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-11

Local Dead Assignment
Elimination

 If l.h.s. of assignment never referenced again before
being overwritten, then can delete assignment

 Why would this happen?
Clean-up after previous optimizations, often

final int count = 10;

...

x = count * 5;

y = x ^ 3;

x = 7;

t1 = 10;

t2 = 5;

t3 = 50;

x = 50;

t4 = 50;

t5 = 3;

t6 = 125000;

y = 125000;

x = 7;

Intermediate code after constant propagation
11/22/2011 N-12

Local Common Subexpression
Elimination

 Avoid repeating the same calculation

 Eliminate redundant loads

 Keep track of available expressions

... a[i] + b[i] ...

t1 = *(fp + ioffset);

t2 = t1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = *(fp + ioffset);

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-13

Intraprocedural optimizations

 Enlarge scope of analysis to whole
procedure
 more opportunities for optimization
 have to deal with branches, merges, and loops

 Can do constant propagation, common
subexpression elimination, etc. at “global”
level

 Can do new things, e.g. loop optimizations
 Optimizing compilers usually work at this

level (-O2)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-14

Code Motion

 Goal: move loop-invariant calculations out of loops

 Can do at source level or at intermediate code level

for (i = 0; i < 10; i = i+1) {

 a[i] = a[i] + b[j];

 z = z + 10000;

}

t1 = b[j];

t2 = 10000;

for (i = 0; i < 10; i = i+1) {

 a[i] = a[i] + t1;

 z = z + t2;

}

N-15

Code Motion at IL
for (i = 0; i < 10; i = i+1) {

 a[i] = b[j];

}

 *(fp + ioffset) = 0;

label top;

 t0 = *(fp + ioffset);

 iffalse (t0 < 10) goto done;

 t1 = *(fp + joffset);

 t2 = t1 * 4;

 t3 = fp + t2;

 t4 = *(t3 + boffset);

 t5 = *(fp + ioffset);

 t6 = t5 * 4;

 t7 = fp + t6; *(t7 + aoffset) = t4;

 t9 = *(fp + ioffset);

 t10 = t9 + 1;

 *(fp + ioffset) = t10;

 goto top;

label done;

Unoptimized
intermediate

code

N-16

Loop Induction Variable
Elimination

 For-loop index is induction variable
 incremented each time around loop
 offsets & pointers calculated from it

 If used only to index arrays, can rewrite with pointers
 compute initial offsets/pointers before loop
 increment offsets/pointers each time around loop
 no expensive scaling in loop
 can then do loop-invariant code motion
for (i = 0; i < 10; i = i+1) {

 a[i] = a[i] + x;

}

 => transformed to
for (p = &a[0]; p < &a[10]; p = p+4) {

 *p = *p + x;

}

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-17

Interprocedural Optimization

 Expand scope of analysis to procedures
calling each other

 Can do local & intraprocedural
optimizations at larger scope

 Can do new optimizations, e.g. inlining

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-18

Inlining: replace call with body

 Replace procedure call with body of called procedure
 Source:

final double pi = 3.1415927;

double circle_area(double radius) {

 return pi * (radius * radius);

}

...

double r = 5.0;

...

double a = circle_area(r);

 After inlining:
...

double r = 5.0;

...

double a = pi * r * r;

 (Then what?)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-19

Intraprocedural (Global)
Optimizations

 Need a convenient representation of procedure body
 Control flow graph (CFG) captures flow of control

 nodes are IL statements, or whole basic blocks
 edges represent (all possible) control flow
 node with multiple successors = branch/switch
 node with multiple predecessors = merge
 loop in graph = loop

 Data flow graph (DFG) capture flow of data, e.g. def/use
chains:
 nodes are def(inition)s and uses
 edge from def to use
 a def can reach multiple uses
 a use can have multiple reaching defs

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-20

Analysis and Transformation

 Each optimization is made up of

 some number of analyses

 followed by a transformation

 Analyze CFG and/or DFG by propagating info forward or
backward along CFG and/or DFG edges

 edges called program points

 merges in graph require combining info

 loops in graph require iterative approximation

 Perform improving transformations based on info computed

 have to wait until any iterative approximation has converged

 Analysis must be conservative/safe/sound so that
transformations preserve program behavior

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-21

Example: Constant Propagation, Folding

 Can use either the CFG or the DFG

 CFG analysis info: table mapping each variable in scope to one of:

 a particular constant

 NonConstant

 Undefined

 Transformation at each instruction:

 if reference a variable that the table maps to a constant, then
replace with that constant (constant propagation)

 if r.h.s. expression involves only constants, and has no side-
effects, then perform operation at compile-time and replace
r.h.s. with constant result (constant folding)

 For best analysis, do constant folding as part of analysis, to learn
all constants in one pass

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-22

Merging data flow analysis
info

 Constraint: merge results must be sound
 if something is believed true after the merge, then it

must be true no matter which path we took into the
merge

 only things true along all predecessors are true after
the merge

 To merge two maps of constant information, build
map by merging corresponding variable
information

 To merge information about two variable
 if one is Undefined, keep the other
 if both same constant, keep that constant
 otherwise, degenerate to NonConstant

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-23

Example Merges

int x

x := 5 x := 5

x ==?

int x

x := 5 x := 4

x ==?

int x

x := 5

x ==?

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-24

Example Merges

int x

x := 5

x ==?

int x

x := 5 x := f(…)

x ==?

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-25

How to analyze loops

i = 0;

x = 10;

y = 20;

while (...) {

 // what’s true here?

 ...

 i = i + 1;

 y = 30;

}

// what’s true here?

... x ... i ... y ...

 Safe but imprecise:
forget everything
when we enter or
exit a loop

 Precise but unsafe:
keep everything
when we enter or
exit a loop

 Can we do better?

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-26

Loop Terminology

preheader

entry edge

head

back

edge

tail

loop

exit edge

11/22/2011 N-27

Optimistic Iterative Analysis

 Assuming information at loop head is same as
information at loop entry

 Then analyze loop body, computing information at
back edge

 Merge information at loop back edge and loop
entry

 Test if merged information is same as original
assumption
 If so, then we’re done
 If not, then replace previous assumption with merged

information,
 and go back to analysis of loop body

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-28

Example

i = 0;

x = 10;

y = 20;

while (...) {

 // what’s true here?

 ...

 i = i + 1;

 y = 30; }

// what’s true here?

... x ... i ... y ...

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-29

Why does this work?

 Why are the results always conservative?
 Because if the algorithm stops, then

 the loop head info is at least as conservative as both
the loop entry info and the loop back edge info

 the analysis within the loop body is conservative, given
the assumption that the loop head info is conservative

 Why does the algorithm terminate?
 It might not!
 But it does if:

 there are only a finite number of times we could merge
values together without reaching the worst case info
(e.g. NotConstant)

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-30

More interprocedural analyses

 Needed to support interprocedural
optimizations

 Alias analysis
 Different references referring to the same memory

locations
 may-alias vs. must-alias, context- and flow-

sensitivity

 Escape analysis (pointers that are live on exit
from procedures), shape analysis (static
analysis of the properties of dynamic data
structures), …

11/22/2011 31 © 2002-11 Hal Perkins & UW CSE

Supporting representations
include

 Call graph

 Program dependence graph

 …

11/22/2011 32 © 2002-11 Hal Perkins & UW CSE

Summary

 Enlarging scope of analysis yields better results
 today, most optimizing compilers work at the

intraprocedural (a\k\a global) level
 Changing though, e.g., gcc LTO (link-time optimization)

 Optimizations organized as collections of
passes, each rewriting IL in place into better
version

 Presence of optimizations makes other parts of
compiler (e.g. intermediate and target code
generation) easier to write

11/22/2011 © 2002-11 Hal Perkins & UW CSE N-33

