
11/12/2011 © 2002-11 Hal Perkins & UW CSE M-1

CSE 401 – Compilers

x86-64, Running MiniJava,

Basic Code Generation and Bootstrapping

Hal Perkins

Autumn 2011

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-2

Agenda

 x86-64: what’s new?

 GNU (AT&T) assembler

 Then enough to get a working project:

 A very basic code generation strategy

 Interfacing with the bootstrap program

 Implementing the system interface

Some x86-64 References
(Links on course web)

 x86-64 Machine-Level Programming
 Earlier version of sec. 3.13 of Computer Systems:

A Programmer’s Perspective 2nd ed. by Bryant &
O’Hallaron (CSE 351 textbook)

 From www.x86-64.org:
 System V Application Binary Interface AMD64

Architecture Processor Supplement
 Gentle Introduction to x86-64 Assembly

 x86-64 Instructions and ABI
 Handout for University of Chicago CMSC 22620,

Spring 2009, by John Reppy

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-3

Compiler Target

 Compiler output is an assembly-
language file that is linked to the “real”
main program written in C

 Lets the C library set up the stack, heap;
handle I/O, etc.

 Target code is Linux x86-64 gcc asm

 Examples on these slides use this notation

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-4

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-5

 The GNU assembler uses AT&T syntax. Main
differences:

Intel vs. GNU Assembler

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movl, addl, pushl [operand size
is added to end]

Register names eax, ebx, ebp, esp, … %eax, %ebx, %ebp, %esp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

x86-64

 Designed by AMD and announced in 1999-
2000. First processors in 2003.

 Intel bet on Itanium for 64-bit processors,
but just in case had a not-so-secret project
to add AMD64 to the Pentium 4

 Announced in 2004 (first called IA-32e, then
EM64T, finally Intel 64)

 Generic term is now x86-64

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-6

x86-64 Main features

 16 64-bit general registers; 64-bit integers (but
int typically defaults to 32 bits; long is 64 bits)

 64-bit address space; pointers are 8 bytes

 8 additional SSE registers (total 16); used
instead of x87 floating point by default

 Register-based function call conventions

 Additional addressing modes (pc relative)

 32-bit legacy mode

 Some pruning of old features

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-7

x86-64 registers

 16 64-bit general registers

 %rax, %rbx, %rcx, %rdx, %rsi, %rdi,
%rbp, %rsp, %r8-%r15

 Registers can be used as 64-bit ints or
pointers, or 32-bit ints (upper half set
to 0 automatically)

 Also possible to reference low-order 16-
and 8-bit chunks

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-8

x86-64 Function Calls

 First 6 arguments in registers, rest on the stack

 int/pointer result returned in %rax

 Stack frame should be 16-byte aligned when
call instruction is executed (i.e., %rsp value is
0xddddddddddddddd0; pushed return address
has that address minus 8)

 We’ll use %rbp as frame pointer, but compilers
often adjust %rsp once on function entry and
reference locals relative to %rsp using a fixed-
size stack frame

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-9

x86-Register Usage

 %rax – function result

 Arguments 1-6 passed in these registers
 %rdi, %rsi, %rdx, %rcx, %r8, %r9

 “this” pointer is first argument, in %rdi

 %rsp – stack pointer; value must be 8-
byte aligned always and 16-byte aligned
when calling a function

 %rfp – frame pointer (optional use)
 We’ll use it

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-10

x86-64 Register Save
Conventions

 A called function must preserve these
registers (or save/restore them if it
wants to use them)

 %rbx, %rbp, %r12-%r15

 %rsp isn’t on the “callee save list”, but
needs to be properly restored for return

 All other registers can change across a
function call

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-11

x86-64 Function Call

 Caller places up to 6 arguments in
registers, rest on stack, then executes call
instruction (which pushes 8-byte return
address)

 On entry, called function prologue is like
the 32-bit version:
 pushq %rbp

 movq %rsp,%rbp

 subq $framesize,%rsp

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-12

x86-64 Function Return

 Called function puts result in %rax (if any)
and restores any callee-save registers if
needed

 Called function returns with:
 movq %rbp,%rsp # or use leave instead of
 popq %rbp # movq/popq
 ret
 Same logic as 32-bit

 If caller allocated space for arguments it
deallocates as needed

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-13

The Nice Thing About
Standards…

 The above is the System V/AMD64 ABI
convention (used by Linux, OS X)

 Microsoft’s x64 calling conventions are slightly
different (sigh…)
 First four parameters in registers %rcx, %rdx,

%r8, %r9; rest on the stack

 Stack frame needs to include empty space for
called function to save values passed in parameter
registers if desired

 Not relevant for us, but worth being aware of it

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-14

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-15

Running MiniJava Programs

 To run a MiniJava program

 Space needs to be allocated for a stack
and a heap

 %rsp and other registers need to have
sensible initial values

 We need some way to allocate storage
(new) and communicate with the outside
world

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-16

Bootstraping from C

 Idea: take advantage of the existing C
runtime library

 Use a small C main program to call the
MiniJava main method as if it were a C
function

 C’s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

Assembler File Format

 GNU syntax is roughly this (sample code will be
provided with codegen phase of the project)

.text # code segment

.globl asm_main # start of compiled static main
;; generated code # repeat .code/.data as needed

asm_main: # start of compiled “main”
 …

.data
;; generated method tables # repeat .text/.data as
needed
…
end

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-17

External Names

 In a Linux environment, an external
symbol is used as-is (xyzzy)

 In Windows and OS X, an external
symbol xyzzy is written in asm code as
_xyzzy (leading underscore)

 Adapt to whatever environment you’re
using – but what you turn in should run
on attu using the Linux conventions

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-18

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-19

Generating .asm Code

 Suggestion: isolate the actual compiler output
operations in a handful of routines
 Modularity & saves some typing

 Possibilities
 // write code string s to .asm output

 void gen(String s) { … }

 // write “op src,dst” to .asm output

 void genbin(String op, String src, String dst) { … }

 // write label L to .asm output as “L:”

 void genLabel(String L) { … }

 A handful of these methods should do it

A Simple Code Generation
Strategy

 Goal: quick ‘n dirty correct code, optimize
later if time

 Traverse AST primarily in execution order
and emit code during the traversal
 Visitor may traverse the tree in ad-hoc ways

depending on sequence that parts need to
appear in the code

 Treat the x86 as a 1-register machine with
a stack for additional intermediate values

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-20

(The?) Simplifying Assumption

 Store all values (reference, int, boolean)
in 64-bit quadwords

 Natural size for 64-bit pointers, i.e., object
references (variables of class types)

 C’s “long” size for integers

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-21

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-22

x86 as a Stack Machine

 Idea: Use x86-64 stack for expression evaluation with
%rax as the “top” of the stack

 Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the
result in %rax

 If a value needs to be preserved while another
expression is evaluated, push %rax, evaluate, then
pop when first value is needed
 Remember: always pop what you push

 Will produce lots of redundant, but correct, code

 Examples below follow code shape examples, but
with some details about where code generation fits

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-23

Example: Generate Code for
Constants and Identifiers

 Integer constants, say 17

 gen(movq $17,%rax)

 leaves value in %rax

 Local variables (any type – int, bool,
reference)

 gen(movq offset(%rbp),%rax)

Example: Generate Code for
exp1 + exp1

 Visit exp1
 generate code to evaluate exp1 with result in %rax

 gen(pushq %rax)
 push exp1 onto stack

 Visit exp2
 generate code for exp2; result in %rax

 gen(popq %rdx)
 pop left argument into %rdx; clean up stack

 gen(addq %rdx,%rax)
 perform the addition; result in %rax

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-24

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-25

Example: var = exp; (1)

 Assuming that var is a local variable

 Visit node for exp

 Generates code that leaves the result of
evaluating exp in %rax

 gen(movq %rax,offset_of_variable(%rbp))

Example: var = exp; (2)

 If var is a more complex expression
(object or array reference, for example)
 visit var

 gen(pushq %rax)
 push reference to variable or object containing

variable onto stack

 visit exp – leaves rhs value in %rax

 gen(popq %rdx)

 gen(movq %rax,appropriate_offset(%rdx))

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-26

Example: Generate Code for
obj.f(e1,e2,…en)

 In principal the code should work like this:
 Visit obj

 leaves reference to object in %rax

 gen(movq %rax,rdi)
 “this” pointer is first argument

 Visit e1, e2, …, en. For each argument,
 gen(movq %rax,correct_argument_register)

 generate code to load method table pointer
located at 0(%rdi) into register like %rax

 generate call instruction with indirect jump

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-27

Method Call Complications

 Big one: code to evaluate any argument
might clobber argument registers (i.e.,
method call in some parameter value)
 Possible strategy to cope on next slides, but

better solutions would be welcome

 Not quite so bad: what if a method has
more than 6 parameters?
 Let’s punt that one and restrict the number of

parameters to the number of parameter
registers
 Looks like the test programs are all ok here

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-28

Method Calls in Parameters

 Suggestion to avoid trouble:

 Evaluate parameters and push them on the
stack

 Right before the call instruction, pop the
parameters into the correct registers

 Or leave the parameters in storage and copy
them into registers, then deallocate after return

 But….

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-29

Stack Alignment (1)

 Above idea hack works provided we don’t call a
method while an odd number of parameter
values are pushed on the stack!
 (violates 16-byte alignment on method call…)

 We have a similar problem if an odd number of
intermediate values are pushed on the stack
when we call a function in the middle of
evaluating an expression

 (But we may get away with it if it only involves
calls to our generated, not library, code)

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-30

Stack Alignment (2)

 Workable solution: keep a counter in the
code generator of how much has been
pushed on the stack. If needed,
gen(pushq %eax) to align the stack before
generating a call instruction

 Another solution: make stack frame big
enough and use movq instead of pushq to
store arguments and temporaries
 Will need some extra bookkeeping to allocate

space for arguments and temporaries

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-31

Sigh…

 Multiple registers for method arguments
is a big win compared to pushing on the
stack, but complicates our life since we
do not have a fancy register allocator

 better ideas for handling x86-64
function calls in MiniJava are most
welcome

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-32

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-33

Code Gen for Method
Definitions

 Generate label for method
 Classname$methodname:

 Generate method prologue
 Push rbp, copy rsp to rbp, subtract frame size from

rsp

 Visit statements in order
 Method epilogue is normally generated as part

of each return statement (next)
 In MiniJava the return is generated after

visiting the method body to generate its code

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-34

Example: return exp;

 Visit exp; leaves result in %rax where it
should be

 Generate method epilogue to unwind
the stack frame; end with ret
instruction

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-35

Control Flow: Unique Labels

 Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …)
 Variation: a set of methods that generate

different kinds of labels for different
constructs (can really help readability of
the generated code)
 (while1, while2, while3, …; if1, if2, …; else1,

else2, …; fi1, fi2, … .)

Control Flow: Tests

 Recall that the context for compiling a
boolean expression is

 Label or address of jump target

 Whether to jump if true or false

 So the visitor for a boolean expression
should receive this information from the
parent node

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-36

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-37

Example: while(exp) body

 Assuming we want the test at the
bottom of the generated loop…

 gen(jmp testLabel)

 gen(bodyLabel:)

 visit body

 gen(testLabel:)

 visit exp (condition) with target=bodyLabel
and sense=“jump if true”

Example: exp1 < exp2

 Similar to other binary operators
 Difference: context is a target label and

whether to jump if true or false
 Code

 visit exp1
 gen(pushq %rax)
 visit exp2
 gen(popq %rdx)
 gen(cmpq %rdx,%rax)
 gen(condjump targetLabel)

 appropriate conditional jump depending on sense of test

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-38

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-39

Boolean Operators

 && (and || if you include it)

 Create label needed to skip around the two
parts of the expression

 Generate subexpressions with appropriate
target labels and conditions

 !exp

 Generate exp with same target label, but
reverse the sense of the condition

Join Points

 Loops and conditional statements have join points where
execution paths merge

 Generated code must ensure that machine state will be
consistent regardless of which path is taken to reach a
join point
 i.e., the paths through an if-else statement must not leave a

different number of words pushed onto the stack
 If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to move the value to the correct register

 With a simple 1-accumulator model of code generation,
this should generally be true without needing extra work;
with better use of registers this becomes an issue

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-40

Bootstrap Program

 The bootstrap is a tiny C program that
calls your compiled code as if it were an
ordinary C function

 It also contains some functions that
compiled code can call as needed
 Mini “runtime library”

 Add to this if you like
 Sometimes simpler to generate a call to a newly

written library routine instead of generating in-line
code – implementer tradeoff

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-41

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-42

Bootstrap Program Sketch

#include <stdio.h>

extern void asm_main(); /* compiled code */

/* execute compiled program */

void main() { asm_main(); }

/* return next integer from standard input */

long get() { … }

/* write x to standard output */

void put(long x) { … }

/* return a pointer to a block of memory at least nBytes
large (or null if insufficient memory available) */

char* minijavaalloc(long nBytes) { return malloc(nBytes); }

Main Program Label

 Compiler needs special handling for the
static main method label
 Label must be the same as the one

declared extern in the C bootstrap program
and declared .globl in the .s asm file

 asm_main used above
 Could be changed, but probably no point

 Why not “main”? (Hint: what is/where is the
real main function?)

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-43

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-44

Interfacing to “Library” code

 Trivial to call “library” functions

 Evaluate parameters using the regular
calling conventions

 Generate a call instruction using the
function label

 (External names need a leading _ in
Windows, OS X)

 Linker will hook everything up

System.out.println(exp)

 MiniJava’s “print” statement
<compile exp; result in %rax>

movq %rax,%rdi ; load argument register

call put ; call external put routine

 If the stack is not kept 16-byte aligned,
calls to external C or library code are
the most likely place for a runtime error

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-45

11/12/2011 © 2002-11 Hal Perkins & UW CSE M-46

And That’s It…

 We’ve now got enough on the table to
complete the compiler project

 Coming Attractions

 Lower-level IR and control-flow graphs

 Back end (instruction selection and
scheduling, register allocation)

 Middle (optimizations)

