
11/5/2011 © 2002-11 Hal Perkins & UW CSE L-1

CSE 401 – Compilers

Code Shape II – Objects & Classes

Hal Perkins

Autumn 2011

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-2

Agenda

 Object representation and layout
 Field access
 What is this?
 Object creation - new

 Method calls
 Dynamic dispatch
 Method tables
 Super

 Runtime type information

(As before, more generality than we actually need for the project)

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-3

What does this program print?

class One {
 int tag;
 int it;
 void setTag() { tag = 1; }
 int getTag() { return tag; }
 void setIt(int it) {this.it = it;}
 int getIt() { return it; }
}
class Two extends One {
 int it;
 void setTag() {
 tag = 2; it = 3;
 }
 int getThat() { return it; }
 void resetIt() { super.setIt(42); }
}

public static void main(String[] args) {
 Two two = new Two();
 One one = two;

 one.setTag();
 System.out.println(one.getTag());

 one.setIt(17);
 two.setTag();
 System.out.println(two.getIt());
 System.out.println(two.getThat());
 two.resetIt();
 System.out.println(two.getIt());
 System.out.println(two.getThat());

 }

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-4

Your Answer Here

Object Representation

 The naïve explanation is that an object contains
 Fields declared in its class and in all superclasses

 Redeclaration of a field hides superclass instance – but
the superclass field is still there somewhere…

 Methods declared in its class and all superclasses
 Redeclaration of a method overrides (replaces) – but

overridden methods can still be accessed by super…

 When a method is called, the method “inside”
that particular object is called

 (But we really don’t want to copy all those methods, do we?)

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-5

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-6

Actual representation

 Each object contains

 An entry for each field (instance variable)

 A pointer to a runtime data structure describing
the class

 Key component: method dispatch table

 Basically a C struct

 Fields hidden by declarations in extended
classes are still allocated in the object and are
accessible from superclass methods

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-7

Method Dispatch Tables

 One of these per class, not per object

 Often known as “vtables”

 One pointer per method – points to
beginning of method code

 Dispatch table offsets fixed at compile
time

Method Tables and
Inheritance

 Simple implementation
 Method table for extended class has pointers to

methods declared in it

 Method table also contains a pointer to parent
class method table

 Method dispatch
 Look in current table and use if method declared locally

 Look in parent class table if not local

 Repeat

 Actually used in typical implementations of some
dynamic languages (e.g. SmallTalk, Ruby, etc.)

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-8

O(1) Method Dispatch

 Idea: First part of method table for extended
class has pointers for same methods in same
order as parent class
 BUT pointers actually refer to overriding methods

if these exist
  Method dispatch is indirect using fixed offsets

known at compile time – O(1)
 In C: *(object->vtbl[offset])(parameters)

 Pointers to additional methods in extended
class are included in the table following
inherited/overridden ones

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-9

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-10

Method Dispatch Footnotes

 Still want pointer to parent class
method table for other purposes

 Casts and instanceof

 Multiple inheritance requires more
complex mechanisms

 Also true for multiple interfaces

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-11

Perverse Example Revisited

class One {
 int tag;
 int it;
 void setTag() { tag = 1; }
 int getTag() { return tag; }
 void setIt(int it) {this.it = it;}
 int getIt() { return it; }
}
class Two extends One {
 int it;
 void setTag() {
 tag = 2; it = 3;
 }
 int getThat() { return it; }
 void resetIt() { super.setIt(42); }
}

public static void main(String[] args) {
 Two two = new Two();
 One one = two;

 one.setTag();
 System.out.println(one.getTag());

 one.setIt(17);
 two.setTag();
 System.out.println(two.getIt());
 System.out.println(two.getThat());
 two.resetIt();
 System.out.println(two.getIt());
 System.out.println(two.getThat());

 }

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-12

Implementation

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-13

Now What?

 Need to explore

 Object layout in memory

 Compiling field references

 Implicit and explicit use of “this”

 Representation of vtables

 Object creation – new

 Code for dynamic dispatch

 Runtime type information – instanceof and casts

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-14

Object Layout

 Typically, allocate fields sequentially

 Follow processor/OS struct/object
alignment conventions when
appropriate/available

 Use first word of object for pointer to
method table/class information

 Objects are allocated on the heap
 No actual bits in the generated code

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-15

Local Variable Field Access

 Source
 int n = obj.fld;

 X86

 Assuming that obj is a local variable in the
current method

 mov eax,[ebp+offsetobj] ; load obj ptr

 mov eax,[eax+offsetfld] ; load fld

 mov [ebp+offsetn],eax ; store n

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-16

Local Fields

 A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
as “f”

 Both compile to the same code – an implicit “this.”
is assumed if not present explicitly

 Mechanism: a reference to the current object
is an implicit parameter to every method

 Can be in a register or on the stack

Source Level View

 When you write:

void setIt(int it) {

 this.it = it;

}

…

obj.setIt(42);

 You really get:

void setIt(ObjType this, int it) {

 this.it = it;

}

…

setIt(obj,42);

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-17

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-18

x86 Conventions (C++)

 ecx is traditionally used as “this”

 Add to method call

mov ecx,receivingObject ; ptr to object

 Do this after arguments are evaluated and
pushed, right before dynamic dispatch code that
actually calls the method

 Need to save ecx in a temporary or on the stack in
methods that call other non-static methods

 One possibility: push or save in method prologue

 Following examples aren’t careful about this

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-19

x86 Local Field Access

 Source
 int n = fld; or int n = this.fld;

 X86
 mov eax,[ecx+offsetfld] ; load fld

 mov [ebp+offsetn],eax ; store n

x86 Method Tables (vtbls)

 Generate these as initialized data in the assembly
language source program

 Need to pick a naming convention for method
labels; suggest:
 For methods, classname$methodname

 Would need something more sophisticated for overloading

 For the vtables themselves, classname$$

 First method table entry points to superclass table
 Also useful: second entry points to default (0-

argument) constructor (if you have constructors)

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-20

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-21

Method Tables For Perverse
Example (Intel/Microsoft asm)

class One {
 void setTag() { … }
 int getTag() { … }
 void setIt(int it) {…}
 int getIt() { … }
}

class Two extends One {
 void setTag() { … }
 int getThat() { … }
 void resetIt() { … }
}

 .data
One$$ dd 0 ; no superclass
 dd One$One
 dd One$setTag
 dd One$getTag
 dd One$setIt
 dd One$getIt
Two$$ dd One$$; parent
 dd Two$Two
 dd Two$setTag
 dd One$getTag
 dd One$setIt
 dd One$getIt
 dd Two$getThat
 dd Two$resetIt

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-22

Method Table Footnotes

 Key point: First four non-constructor
method entries in Two’s method table
are pointers to methods declared in
One in exactly the same order
 Compiler knows correct offset for a

particular method pointer regardless of
whether that method is overridden and
regardless of the actual (dynamic) type of
the object

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-23

Object Creation – new

 Steps needed
 Call storage manager (malloc or similar) to

get the raw bits

 Store pointer to method table in the first 4
bytes of the object

 Call a constructor (with pointer to the new
object, this, in ecx)

 Result of new is pointer to the constructed
object

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-24

Object Creation

 Source
 One one = new One(…);

 X86
push nBytesNeeded ; obj size + 4
call mallocEquiv ; addr of bits returned in eax
add esp,4 ; pop nBytesNeeded argument
lea edx,One$$; get method table address
mov [eax],edx ; store vtab ptr at beginning of object
mov ecx,eax ; set up “this” for constructor
push ecx ; save ecx (constructor might clobber it)
<push constructor arguments> ; arguments (if needed)
call One$One ; call constructor (no vtab lookup needed)
<pop constructor arguments> ; (if needed)
pop eax ; recover ptr to object
mov [ebp+offsetone],eax ; store object reference in variable one

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-25

Constructor

 Only special issue here is generating
call to superclass constructor

 Same issues as super.method(…) calls –
we know the superclass name, so just
generate a direct call to the appropriate
method.

Method Calls

 Steps needed
 Push arguments as usual
 Load pointer to object in ecx (this)
 Get pointer to method table from first 4 bytes

of object
 Jump indirectly through method table
 Restore ecx to point to current object (if

needed after method returns)
 Useful hack: push ecx in the function prologue so it

is always in the stack frame at a known location &
reload when needed if it might be clobbered

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-26

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-27

Method Call

 Source
 obj.meth(…);

 X86
<push arguments from right to left> ; (as needed)

mov ecx,[ebp+offsetobj] ; get pointer to object

mov eax,[ecx] ; get pointer to method table

call dword ptr [eax+offsetmeth] ; call indirect via method tbl

<pop arguments> ; (if needed)

mov ecx,[ebp+offsetecxtemp] ; (if needed)

Runtime Type Checking

 Use the method table for the class as a
“runtime representation” of the class

 The test for “o instanceof C” is
 Is o’s method table pointer == &C$$?

 If so, result is “true”

 Recursively, get pointer to superclass method
table from the method table and check that

 Stop when you reach Object (or a null pointer,
depending on how you represent things)

 If no match by the top of the chain, result is “false”

 Same test as part of check for legal downcast

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-28

11/5/2011 © 2002-11 Hal Perkins & UW CSE L-29

Coming Attractions

 x86-64: what changes; what doesn’t

 Simple code generation for project

 Industrial-strength register allocation,
instruction selection, and scheduling

 Survey of code optimization

