CSE 401 – Compilers

LR Parsing
Hal Perkins
Autumn 2011
Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts
LR(1) Parsing

- We’ll look at LR(1) parsers
 - Left to right scan, Rightmost derivation, 1 symbol lookahead
 - Almost all practical programming languages have an LR(1) grammar
 - LALR(1), SLR(1), etc. – subsets of LR(1)
 - LALR(1) can parse most real languages, tables are more compact, and is used by YACC/Bison/CUP/etc.
Bottom-Up Parsing

- **Idea:** Read the input left to right.
- Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree.
- The upper edge of this partial parse tree is known as the *frontier*.
Example

- Grammar

\[
S ::= aABe \\
A ::= Abc | b \\
B ::= d
\]

- Bottom-up Parse

```
a b b c d e
```
Details

- The bottom-up parser reconstructs a reverse rightmost derivation

- Given the rightmost derivation
 \[S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w \]
 the parser will first discover \(\beta_{n-1} \Rightarrow \beta_n \), then \(\beta_{n-2} \Rightarrow \beta_{n-1} \), etc.

- Parsing terminates when
 - \(\beta_1 \) reduced to \(S \) (start symbol, success), or
 - No match can be found (syntax error)
How Do We Parse with This?

- Key: given what we’ve already seen and the next input symbol, decide what to do.
- Choices:
 - Perform a reduction
 - Look ahead further
- Can reduce $A \Rightarrow \beta$ if both of these hold:
 - $A \Rightarrow \beta$ is a valid production
 - $A \Rightarrow \beta$ is a step in \textit{this} rightmost derivation
- This is known as a \textit{shift-reduce} parser
Sentential Forms

- If $S \Rightarrow^{*} \alpha$, the string α is called a \textit{sentential form} of the grammar.
- In the derivation $S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w$, each of the β_i are sentential forms.
- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential)
Handles

- Informally, a substring of the tree frontier that matches the right side of a production

 - Even if $A::=\beta$ is a production, β is a handle only if it matches the frontier at a point where $A::=\beta$ was used in that derivation

 - β may appear in many other places in the frontier without being a handle for that particular production
Handles (cont.)

- Formally, a *handle* of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ.
Handle Examples

- In the derivation
 \[S \rightarrow aABe \rightarrow aAde \rightarrow aAbcde \rightarrow abbcde \]
 - abbcde is a right sentential form whose handle is \(A::=b \) at position 2
 - \(aAbcde \) is a right sentential form whose handle is \(A::=Abc \) at position 4
 - Note: some books take the left of the match as the position
Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input
Shift-Reduce Parser Operations

- **Reduce** – if the top of the stack is the right side of a handle $A::=\beta$, pop the right side β and push the left side A

- **Shift** – push the next input symbol onto the stack

- **Accept** – announce success

- **Error** – syntax error discovered
Shift-Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
<td>shift</td>
</tr>
</tbody>
</table>

\[S ::= aABe \]
\[A ::= Abc | b \]
\[B ::= d \]
How Do We Automate This?

- Def. *Viable prefix* – a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form
- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them
DFA for prefixes of

\[
S ::= aABe \\
A ::= Abc | b \\
B ::= d
\]

\[
A ::= b \\
B ::= d
\]
Trace

Stack
$\$

Input
$abbcde$

\[
S ::= aABe
\]
\[
A ::= Abc \mid b
\]
\[
B ::= d
\]
Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We’ll defer construction details for now
Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top
 - ∴ Scanning the stack will take us through the same transitions as before until the last one
 - ∴ If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack
Stack

- Change the stack to contain pairs of states and symbols from the grammar
 \[s_0 \ X_1 \ s_1 \ X_2 \ s_2 \ ... \ X_n \ s_n \]
- State \(s_0 \) represents the accept state
 (Not always added – depends on particular presentation)

- Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations it’s clearer to use both.
Encoding the DFA in a Table

- A shift-reduce parser’s DFA can be encoded in two tables
 - One row for each state
 - *action* table encodes what to do given the current state and the next input symbol
 - *goto* table encodes the transitions to take after a reduction
Actions (1)

- Given the current state and input symbol, the main possible actions are:
 - si – shift the input symbol and state i onto the stack (i.e., shift and move to state i)
 - rj – reduce using grammar production j
 - The production number tells us how many $<$symbol, state$>$ pairs to pop off the stack
Actions (2)

- Other possible *action* table entries
 - `accept`
 - `blank` – no transition – syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens
Goto

- When a reduction is performed, \(<\text{symbol, state}>\) pairs are popped from the stack revealing a state \textit{uncovered_s} on the top of the stack.

- \text{goto}[\textit{uncovered_s}, A]\) is the new state to push on the stack when reducing production \(A ::= \beta\) (after popping \(\beta\) and revealing state \textit{uncovered_s} on top).
Reminder: DFA for

\[
S ::= aABe \\
A ::= Abc \mid b \\
B ::= d
\]

\[
\begin{align*}
A & ::= b \\
B & ::= d
\end{align*}
\]
LR Parse Table for

1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

<table>
<thead>
<tr>
<th>State</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>
LR Parsing Algorithm (1)

```plaintext
word = scanner.getToken();
while (true) {
    s = top of stack;
    if (action[s, word] = si) {
        push word; push i (state);
        word = scanner.getToken();
    } else if (action[s, word] = rj) {
        pop 2 * length of right side of production j (2*|β|);
        uncovered_s = top of stack;
        push left side A of production j;
        push state goto[uncovered_s, A];
    } else if (action[s, word] = accept) {
        return;
    } else {
        // no entry in action table
        report syntax error;
        halt or attempt recovery;
    }
}
```
Example

Stack
$

Input
abbcde$

1. \(S ::= aABe \)
2. \(A ::= Abc \)
3. \(A ::= b \)
4. \(B ::= d \)

<table>
<thead>
<tr>
<th>S</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>$</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>$</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>s5</td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>

Example

Stack
$

Input
abbcde$

1. \(S ::= aABe \)
2. \(A ::= Abc \)
3. \(A ::= b \)
4. \(B ::= d \)

<table>
<thead>
<tr>
<th>S</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>$</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>$</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>s5</td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-28
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - *Where* we are in the right hand side of each of those productions
Items

- An item is a production with a dot in the right hand side.
- Example: Items for production $A ::= XY$

 $A ::= .XY$
 $A ::= X.Y$
 $A ::= XY.$

- Idea: The dot represents a position in the production.
DFA for

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]

1. \(S ::= .aABe \) \rightarrow accept
2. \(S ::= .aABe, A ::= .Abc, A ::= .b \)
3. \(S ::= .aABe, A ::= A.bc, A ::= .d \)
4. \(A ::= b. \)
5. \(B ::= d. \)
6. \(A ::= Ab.c \)
7. \(A ::= Abc. \)
8. \(S ::= aAB.e \)
9. \(S ::= aAB.e. \)
Problems with Grammars

- Grammars can cause problems when constructing a LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts
Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)

- Classic example: if-else statement
 \[S ::= \text{ifthen } S \mid \text{ifthen } S \text{ else } S \]
Parser States for

1. $S ::= \text{ifthen } S$
2. $S ::= \text{ifthen } S \text{ else } S$

- State 3 has a shift-reduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)
 - $S ::= \text{ifthen } S$

(Note: other $S ::= \text{ifthen }$ items not included in states 2-4 to save space)
Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a “longest match” rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want
Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

\[S ::= A \]
\[S ::= B \]
\[A ::= x \]
\[B ::= x \]
Parser States for

- State 2 has a reduce-reduce conflict (r3, r4)

1. \(S ::= A \)
2. \(S ::= B \)
3. \(A ::= x \)
4. \(B ::= x \)

\[
\begin{align*}
\text{State 1: } & S ::= .A \\
& S ::= .B \\
& A ::= .x \\
& B ::= .x \\
\text{State 2: } & A ::= x. \\
& B ::= x.
\end{align*}
\]
Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.
- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states
 - Most practical tools use this information
 - Fix the grammar
Another Reduce-Reduce Conflict

- Suppose the grammar separates arithmetic and boolean expressions

\[
\begin{align*}
\text{expr} & \ ::= \ aexp \mid bexp \\
\text{aexp} & \ ::= \ aexp \ast \text{id} \mid \text{id} \\
\text{bexp} & \ ::= \ bexp \&\& \text{id} \mid \text{id} \\
\text{id} & \ ::= \ id
\end{align*}
\]

- This will create a reduce-reduce conflict
Covering Grammars

- A solution is to merge \texttt{aident} and \texttt{bident} into a single non-terminal (or use \texttt{id} in place of \texttt{aident} and \texttt{bident} everywhere they appear)

- This is a \textit{covering grammar}
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later
Coming Attractions

- Constructing LR tables
 - We’ll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 3