
10/10/2011 © 2002-11 Hal Perkins & UW CSE D-1

CSE 401 – Compilers

LR Parsing

Hal Perkins

Autumn 2011

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-2

Agenda

 LR Parsing

 Table-driven Parsers

 Parser States

 Shift-Reduce and Reduce-Reduce
conflicts

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-3

LR(1) Parsing

 We’ll look at LR(1) parsers

 Left to right scan, Rightmost derivation, 1
symbol lookahead

 Almost all practical programming
languages have an LR(1) grammar

 LALR(1), SLR(1), etc. – subsets of LR(1)

 LALR(1) can parse most real languages, tables
are more compact, and is used by YACC/Bison/
CUP/etc.

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-4

Bottom-Up Parsing

 Idea: Read the input left to right

 Whenever we’ve matched the right
hand side of a production, reduce it to
the appropriate non-terminal and add
that non-terminal to the parse tree

 The upper edge of this partial parse
tree is known as the frontier

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-5

Example

 Grammar

 S ::= aAB e

 A ::= Abc | b

 B ::= d

 Bottom-up Parse

a b b c d e

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-6

Details

 The bottom-up parser reconstructs a reverse
rightmost derivation

 Given the rightmost derivation
S =>1=>2=>…=>n-2=>n-1=>n = w

 the parser will first discover n-1=>n , then
n-2=>n-1 , etc.

 Parsing terminates when
 1 reduced to S (start symbol, success), or

 No match can be found (syntax error)

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-7

How Do We Parse with This?

 Key: given what we’ve already seen and the
next input symbol, decide what to do.

 Choices:
 Perform a reduction

 Look ahead further

 Can reduce A=> if both of these hold:
 A=> is a valid production

 A=> is a step in this rightmost derivation

 This is known as a shift-reduce parser

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-8

Sentential Forms

 If S =>* , the string  is called a sentential
form of the of the grammar

 In the derivation
S =>1=>2=>…=>n-2=>n-1=>n = w

 each of the i are sentential forms

 A sentential form in a rightmost derivation is
called a right-sentential form (similarly for
leftmost and left-sentential)

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-9

Handles

 Informally, a substring of the tree
frontier that matches the right side of a
production
 Even if A::= is a production,  is a handle

only if it matches the frontier at a point
where A::= was used in that derivation

  may appear in many other places in the
frontier without being a handle for that
particular production

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-10

Handles (cont.)

 Formally, a handle of a right-sentential
form  is a production A ::=  and a
position in  where  may be replaced
by A to produce the previous right-
sentential form in the rightmost
derivation of 

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-11

Handle Examples

 In the derivation

S => aABe => aAde => aAbcde => abbcde

 abbcde is a right sentential form whose
handle is A::=b at position 2

 aAbcde is a right sentential form whose
handle is A::=Abc at position 4

 Note: some books take the left of the match as
the position

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-12

Implementing Shift-Reduce
Parsers

 Key Data structures

 A stack holding the frontier of the tree

 A string with the remaining input

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-13

Shift-Reduce Parser
Operations

 Reduce – if the top of the stack is the
right side of a handle A::=, pop the
right side  and push the left side A

 Shift – push the next input symbol onto
the stack

 Accept – announce success

 Error – syntax error discovered

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-14

Shift-Reduce Example

Stack Input Action

$ abbcde$ shift

S ::= aABe
A ::= Abc | b
B ::= d

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-15

How Do We Automate This?

 Def. Viable prefix – a prefix of a right-
sentential form that can appear on the stack
of the shift-reduce parser

 Equivalent: a prefix of a right-sentential form that
does not continue past the rightmost handle of
that sentential form

 Idea: Construct a DFA to recognize viable
prefixes given the stack and remaining input

 Perform reductions when we recognize them

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-16

DFA for prefixes of

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c
A ::= Abc

B

e

S ::= aABe
accept

$

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-17

Trace

Stack Input

$ abbcde$

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c
A ::= Abc

B

e
S ::= aABe accept

$

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-18

Observations

 Way too much backtracking

 We want the parser to run in time
proportional to the length of the input

 Where the heck did this DFA come from
anyway?

 From the underlying grammar

 We’ll defer construction details for now

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-19

Avoiding DFA Rescanning

 Observation: after a reduction, the contents
of the stack are the same as before except
for the new non-terminal on top

  Scanning the stack will take us through the
same transitions as before until the last one

  If we record state numbers on the stack, we
can go directly to the appropriate state when we
pop the right hand side of a production from the
stack

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-20

Stack

 Change the stack to contain pairs of
states and symbols from the grammar
$s0 X1 s1 X2 s2 … Xn sn

 State s0 represents the accept state
(Not always added – depends on particular presentation)

 Observation: in an actual parser, only the state numbers need
to be pushed, since they implicitly contain the symbol
information, but for explanations it’s clearer to use both.

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-21

Encoding the DFA in a Table

 A shift-reduce parser’s DFA can be
encoded in two tables

 One row for each state

 action table encodes what to do given the
current state and the next input symbol

 goto table encodes the transitions to take
after a reduction

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-22

Actions (1)

 Given the current state and input
symbol, the main possible actions are

 si – shift the input symbol and state i onto
the stack (i.e., shift and move to state i)

 rj – reduce using grammar production j
 The production number tells us how many

<symbol, state> pairs to pop off the stack

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-23

Actions (2)

 Other possible action table entries

 accept

 blank – no transition – syntax error

 A LR parser will detect an error as soon as
possible on a left-to-right scan

 A real compiler needs to produce an error
message, recover, and continue parsing when
this happens

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-24

Goto

 When a reduction is performed,
<symbol, state> pairs are popped from
the stack revealing a state uncovered_s
on the top of the stack

 goto[uncovered_s , A] is the new state
to push on the stack when reducing
production A ::=  (after popping  and
revealing state uncovered_s on top)

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-25

Reminder: DFA for

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c
A ::= Abc

B

e
S ::= aABe

accept

$

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-26

LR Parse Table for

1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

State
action goto

a b c d e $ A B S

1 s2 acc g1

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-27

LR Parsing Algorithm (1)

word = scanner.getToken();

while (true) {

 s = top of stack;

 if (action[s, word] = si) {

 push word; push i (state);

 word = scanner.getToken();

 } else if (action[s, word] = rj) {

 pop 2 * length of right side of

 production j (2*||);

 uncovered_s = top of stack;

 push left side A of production j ;

 push state goto[uncovered_s, A];

 }

} else if (action[s, word] = accept) {

 return;

} else {

 // no entry in action table

 report syntax error;

 halt or attempt recovery;

}

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-28

Example

Stack Input

$ abbcde$

1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

S

action goto

a b c d e $ A B S

1 s2 ac g1

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-29

LR States

 Idea is that each state encodes

 The set of all possible productions that we
could be looking at, given the current state
of the parse, and

 Where we are in the right hand side of
each of those productions

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-30

Items

 An item is a production with a dot in
the right hand side

 Example: Items for production A ::= XY

 A ::= .XY

 A ::= X.Y

 A ::= XY.

 Idea: The dot represents a position in
the production

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-31

DFA for

S ::= aABe
A ::= Abc | b
B ::= d

S ::= .aABe

S ::= a.ABe
A ::= .Abc
A ::= .b

A ::= b.

accept
$

a

b

S ::= aA.Be
A ::= A.bc
B ::= .d

A

B ::= d.

d

b
A ::= Ab.c

A ::= Abc.

c

B
S ::= aAB.e e S ::= aABe.

1

2

4

3

5

6

7

8 9

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-32

Problems with Grammars

 Grammars can cause problems when
constructing a LR parser

 Shift-reduce conflicts

 Reduce-reduce conflicts

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-33

Shift-Reduce Conflicts

 Situation: both a shift and a reduce are
possible at a given point in the parse
(equivalently: in a particular state of the
DFA)

 Classic example: if-else statement

 S ::= ifthen S | ifthen S else S

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-34

Parser States for

 State 3 has a shift-
reduce conflict

 Can shift past else
into state 4 (s4)

 Can reduce (r1)

S ::= ifthen S

 (Note: other S ::= . ifthen

items not included in states
2-4 to save space)

1. S ::= ifthen S
2. S ::= ifthen S else S

S ::= . ifthen S
S ::= . ifthen S else S

ifthen

1

S ::= ifthen . S
S ::= ifthen . S else S

S

2

S ::= ifthen S .
S ::= ifthen S . else S

else

3

S ::= ifthen S else . S 4

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-35

Solving Shift-Reduce Conflicts

 Fix the grammar

 Done in Java reference grammar, others

 Use a parse tool with a “longest match”
rule – i.e., if there is a conflict, choose
to shift instead of reduce

 Does exactly what we want for if-else case

 Guideline: a few shift-reduce conflicts are
fine, but be sure they do what you want

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-36

Reduce-Reduce Conflicts

 Situation: two different reductions are
possible in a given state

 Contrived example

 S ::= A

 S ::= B

 A ::= x

 B ::= x

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-37

Parser States for

 State 2 has a
reduce-reduce
conflict (r3, r4)

S ::= .A
S ::= .B
A ::= .x
B ::= .x

x

1

A ::= x.
B ::= x.

2

1. S ::= A
2. S ::= B
3. A ::= x
4. B ::= x

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-38

Handling Reduce-Reduce
Conflicts

 These normally indicate a serious
problem with the grammar.

 Fixes
 Use a different kind of parser generator

that takes lookahead information into
account when constructing the states
 Most practical tools use this information

 Fix the grammar

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-39

Another Reduce-Reduce
Conflict

 Suppose the grammar separates
arithmetic and boolean expressions

 expr ::= aexp | bexp

 aexp ::= aexp * aident | aident

 bexp ::= bexp && bident | bident

 aident ::= id

 bident ::= id

 This will create a reduce-reduce conflict

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-40

Covering Grammars

 A solution is to merge aident and bident into
a single non-terminal (or use id in place of
aident and bident everywhere they appear)

 This is a covering grammar
 Includes some programs that are not generated

by the original grammar

 Use the type checker or other static semantic
analysis to weed out illegal programs later

10/10/2011 © 2002-11 Hal Perkins & UW CSE D-41

Coming Attractions

 Constructing LR tables

 We’ll present a simple version (SLR(0)) in
lecture, then talk about extending it to
LR(1)

 LL parsers and recursive descent

 Continue reading ch. 3

