L Abstract Syntax Trees

=
= The parser’s output Is an abstract syntax tree
(AST) representing the grammatical structure

of the parsed input

= ASTs represent only semantically meaningful
aspects of input program, unlike concrete
syntax trees which record the complete textual
form of the input

= There’s no need to record keywords or
punctuation like (), ;, else

= The rest of compiler only cares about the abstract
structure

02/03/10

L MiniJava AST Node Classes

“oa 1

Each node in an AST Is an instance of an
AST class

e.g. If, Assign, Plus, VarDecl, etc.

Each AST class declares its own instance
variables holding its AST subtrees
I T has Exp, and 2 Statement
Assign has Identifier and Exp
= Plus has 2 Exp
= VarDecl has Type and Identifier

CSE401 Wi10

L AST Class Hierarchy

= AST classes are organized into an inheritance
hierarchy based on commonalities of meaning and
structure

= Each "abstract non-terminal” that has multiple
alternative concrete forms will have an abstract class
that’s the superclass of the various alternative forms
= Statement is abstract superclass of If, Assign, etc.

= EXp is abstract superclass of Plus, IdentifierExp, etc.

= Type is abstract superclass of IntegerType,
IdentifierType, etc.

CSE401 Wi10

L Productions
T

]
= All of the form:

LHS -:= RHS1 {: Java code 1 :}
| RHS2 {: Java code 2 :}
| ...
| RHSn {: Java code n :};
= Can label symbols in RHS with :var suffix to

refer to its result value in Java code
« varleftis set to line in input where var symbol was

CSE401 Wi10

L Productions (cont.)
_—

|
= Example
EXp -:= Exp:argl PLUS Exp:arg2
{: RESULT = new AddExp(argl, argz2,
arglleft);:}
| INT _LITERAL:value{: RESULT = new
IntegerLiteral(value,valueleft);:}

| ExXp:rcvr PERIOD ldentifier:message
OPEN_PAREN ExpList:args CLOSE_PAREN

{: RESULT = new Call(
rcvr,message,args,rcvrileft);:}

CSE401 Wi10

