
CSE 401 – CompilersCSE 401 Compilers

Running MiniJava
Basic Code Generation and Bootstrapping

Hal PerkinsHal Perkins
Winter 2010

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-1

Agenda

Enough to get a working project
Assembler source file formatAssembler source file format
Interfacing with the bootstrap program &
outside worldoutside world
A basic code generation strategy

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-2

What We Need

To run a MiniJava program:
Space needs to be allocated for a stackSpace needs to be allocated for a stack
and a heap
ESP and EBP need to have sensible initialESP and EBP need to have sensible initial
values
We need some way to allocate storage and y g
communicate with the outside world

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-3

Bootstrapping from C
Idea: Start execution in a small main function
written in C
C ll h l dC main calls the compiled MiniJava main
method using standard C linkage
MiniJava’s main executes from thereMiniJava s main executes from there
Compiled code can call back to other functions
included in the same C file (malloc, print, …)(, p ,)

Add to this file if you like
Sometimes easier for generated code to call an external
function than producing the whole thing in-linefunction than producing the whole thing in line

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-4

Bootstrap Program Sketch
#include <stdio.h>
extern void asm_main(); /* compiled code */
/* execute compiled program *//* execute compiled program */

int main() { asm_main(); return 0; }
/* write x to standard output */

void put(int x) { printf(“…”, x); }
/* return a pointer to a block of memory with at least n

bytes (or null if insufficient memory available) */
void* runtimealloc(int n) { return malloc(n); }

Actual code is file boot c linked from codegen project page

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-5

Actual code is file boot.c linked from codegen project page

GNU Assembler File Format
Here is a skeleton for the .asm file to be produced by
MiniJava compilers (gnu assembler format)

.text # code segment

.globl asm_main # declare asm_main as entry point

asm main:asm_main:
main program starts execution here
…

.data # data segment
generated method tables & static data
…
repeat .text/.data as needed

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-6

repeat .text/.data as needed

Intel vs. GNU Syntax
The GNU assembler uses AT&T syntax for historical
reasons. Main differences:

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movl, addl, pushl
[operand size added to end]

Register names eax ebx ebp esp %eax %ebx %ebp %espRegister names eax, ebx, ebp, esp, … %eax, %ebx, %ebp, %esp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-7

Main Program Label

Compiler needs special handling for the
static main method label

Label declared extern in C bootstrap
program must match .globl label in the
compiler generates assembly filecompiler-generates assembly file
“asm_main” used in starter code

Can’t be “main” Why not?Can t be main . Why not?

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-8

External Names (technicality)

In linux an external symbol is used as-is
In Windows and Intel OS X, the ,
convention is that an external symbol
xyzzy appears in the asm code as _xyzzy
(l di d)(leading underscore)
Adapt to whatever environment you’re
usingusing

But what you turn in needs to run on attu
(linux)()

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-9

System.out.println(exp)

Evaluate exp, then call the external put
function in boot.c (which calls printf)function in boot.c (which calls printf)

<compile exp; result in eax>
pushl %eax # push exp value
call put # call external put routine
addl $4,%esp # pop parameter

More sample code in demo s file linked from assignmentMore sample code in demo.s file linked from assignment

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-10

Compiler Code Generation
Suggestion: isolate the actual compiler output
(print) operations in a handful of routines

Modularity & saves some typing
Possibilities

// write code string s to .asm output// write code string s to .asm output
void gen(String s) { … }

// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { }void genbin(String op, String src, String dst) { … }

// write label L to .asm output as “L:”
void genLabel(String L) { … }

A handful of these methods should do it

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-11

A handful of these methods should do it

A Simple Code Generation
Strategy

Goal: quick ‘n dirty correct code, improve
later if time
Traverse AST primarily in execution order
and emit code during the traversal

fMay need to control the traversal from inside
the visitor methods, or have both bottom-up
and top-down visitorsp

Treat the x86 as a 1-register stack
machine for now

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-12

x86 as a Stack Machine
Idea: Use x86 stack for expression evaluation with
eax as the “top” of the stack
Invariant: Whenever an expression (or part of one)Invariant: Whenever an expression (or part of one)
is evaluated at runtime, the result winds up in eax
If a value needs to be preserved while evaluating
another expression push eax evaluate then popanother expression, push eax, evaluate, then pop

Remember: always pop what you push
Will produce lots of redundant, but correct, code

Examples below follow code shape examples butExamples below follow code shape examples, but
with approximate gnu syntax – fix up as needed

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-13

Example: Generate Code for
Constants and Identifiers

Integer constants, say 17
gen(movl $17 %eax)gen(movl $17,%eax)

leaves value in eax

Variables (whether int boolean orVariables (whether int, boolean, or
reference type)

gen(movl var-offset(base-register) %eax)gen(movl var-offset(base-register),%eax)

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-14

Example: Generate Code for
exp1 + exp1

Visit exp1
generates code to evaluate exp1 and put result in eax

gen(pushl %eax)
generate a push instruction

Visit exp2Visit exp2
generates code for exp2; result in eax

gen(popl %edx)
pop left argument into edx; cleans up stack

gen(addl %edx,%eax)
perform the addition; result in eax

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-15

perform the addition; result in eax

Example: var = exp; (1)

Assuming that var is a local variable
visit node for expvisit node for exp

Generates code that leaves the result of
evaluating exp in eax

gen(movl %eax,variable-offset(%ebp))

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-16

Example: var = exp; (2)

If var is a more complex expression
(object or array reference, for example)

visit var
gen(pushl %eax)

p sh efe ence to a iable o object containingpush reference to variable or object containing
variable onto stack

visit exp
gen(popl %edx)
gen(movl %eax,appropriate_offset(%edx))

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-17

Example: return exp;

Visit exp; leaves result in eax where it
should beshould be
Generate method epilogue to unwind
the stack frame; end with retthe stack frame; end with ret
instruction

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-18

Control Flow: Unique Labels

Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …, L42, …)

Variation: a set of methods that generate
diff t ki d f l b l f diff tdifferent kinds of labels for different
constructs (can really help readability of
the generated code)the generated code)

(while1, while2, while3, …; if1, if2, …; else1,
else2, …; fi1, fi2, … .)

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-19

Control Flow: Tests

Recall the context for compiling a
boolean expression:boolean expression:

Jump target
Whether to jump if true or falseWhether to jump if true or false

So visitor for a boolean expression
needs this information from parentneeds this information from parent
node

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-20

Example: while(exp) body

Assuming we want the test at the
bottom of the generated loop…bottom of the generated loop…

gen(jmp testLabel)
gen(bodyLabel:)gen(bodyLabel:)
visit body
gen(testLabel:)gen(testLabel:)
visit exp (condition) with target=bodyLabel
and sense=“jump if true”

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-21

and sense= jump if true

Example exp1 < exp2
Similar to other binary operators
Difference: context is a target label and whether to
jump if true or falsejump if true or false
Code

visit exp1
gen(pushl %eax)
visit exp2
gen(popl %edx)
gen(cmp %edx,%eax)
gen(condjump targetLabel)

appropriate conditional jump depends on sense of test

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-22

Boolean Operators

&& and ||
Create label needed to skip around secondCreate label needed to skip around second
operand when appropriate
Generate subexpressions with appropriateGenerate subexpressions with appropriate
target labels and conditions

!exp!exp
Generate exp with same target label, but
reverse the sense of the condition

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-23

reverse the sense of the condition

More to come…

Still need to talk about methods,
dynamic dispatch, object creation, etc.dynamic dispatch, object creation, etc.

See lecture slides

Look at the codegen project writeup forLook at the codegen project writeup for
suggestions about how to start small
and build up to a complete compilerand build up to a complete compiler.

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-24

