!'_ CSE 401 — Compilers

Running MiniJava
Basic Code Generation and Bootstrapping

Hal Perkins
Winter 2010

2/25/2010 © 2002-10 Hal Perkins & UW CSE

M-1

i Agenda

= Enough to get a working project
= Assembler source file format

= Interfacing with the bootstrap program &
outside world

= A basic code generation strategy

2/25/2010 © 2002-10 Hal Perkins & UW CSE

M-2

i What We Need

= To run a MiniJava program:

= Space needs to be allocated for a stack
and a heap

= ESP and EBP need to have sensible initial
values

= We need some way to allocate storage and
communicate with the outside world

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-3

i Bootstrapping from C

s ldea: Start execution in a small marn function
written in C

= C main calls the compiled MiniJava main
method using standard C linkage

= MiniJava’'s main executes from there
= Compiled code can call back to other functions

Included in the same C file (malloc, print, ...)

= Add to this file if you like

= Sometimes easier for generated code to call an external
function than producing the whole thing in-line

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-4

i Bootstrap Program Sketch

#include <stdio.h>

extern void asm_main(); /* compiled code */

/* execute compiled program */
int main() { asm_main(); return 0; }

/* write x to standard output */
void put(int x) { printf(“...”, xX); }

/* return a pointer to a block of memory with at least n
bytes (or null if insufficient memory available) */

void* runtimealloc(int n) { return malloc(n); }

= Actual code is file boot.c linked from codegen project page

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-5

GNU Assembler File Format

= Here Is a skeleton for the .asm file to be produced by
MiniJava compilers (gnu assembler format)

text # code segment
.globl asm_main # declare asm_main as entry point
asm_main:

main program starts execution here

.data # data segment
generated method tables & static data

repeat .text/.data as needed

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-6

i Intel vs. GNU Syntax

= The GNU assembler uses AT&T syntax for historical

reasons. Main differences:

Intel/Microsoft

AT&T/GNU as

Operand order: op a,b

a = a op b (dst first)

b = a op b (dst last)

Memory address

[baseregister+offset]

offset(baseregister)

Instruction mnemonics

mov, add, push, ...

movl, addl, pushl
[operand size added to end]

Register names

eax, ebx, ebp, esp, ...

%eax, Y%ebx, %ebp, %esp, ...

Constants

17, 42

$17, $42

Comments

- 1o end of line

to end of line or /* ... */

2/25/2010

© 2002-10 Hal Perkins & UW CSE

M-7

i Main Program Label

= Compiler needs special handling for the
static main method label

= Label declared extern in C bootstrap
program must match .globl label in the
compiler-generates assembly file

= “asm_main” used In starter code
« Can’'t be “main”. Why not?

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-8

i External Names (technicality)

= In linux an external symbol is used as-is

= In Windows and Intel OS X, the
convention Is that an external symbol
Xyzzy appears in the asm code as _Xxyzzy

(leading underscore)
= Adapt to whatever environment you're

using
= But what you turn in needs to run on attu
(linux)

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-9

i System.out.printin(exp)

= Evaluate exp, then call the external put
function in boot.c (which calls printf)

<compile exp; result in eax>

pushl %eax # push exp value

call put # call external put routine
addl $4,%esp # pop parameter

= More sample code in demo.s file linked from assignment

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-10

Compiler Code Generation

= Suggestion: isolate the actual compiler output
(print) operations in a handful of routines

= Modularity & saves some typing

= Possibilities
// write code string s to .asm output
void gen(Strings) { ... }
// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { ... }
// write label L to .asm output as “L:”
void genLabel(String L) { ... }

= A handful of these methods should do it

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-11

A Simple Code Generation
i Strategy

= Goal: quick ‘n dirty correct code, improve
later If time

= Traverse AST primarily in execution order
and emit code during the traversal

= May need to control the traversal from inside
the visitor methods, or have both bottom-up
and top-down visitors

= [reat the x86 as a 1-register stack
machine for now

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-12

X86 as a Stack Machine

= ldea: Use x86 stack for expression evaluation with
eax as the “top” of the stack

= Invariant: Whenever an expression (or part of one)
IS evaluated at runtime, the result winds up in eax

= |If a value needs to be preserved while evaluating
another expression, push eax, evaluate, then pop
= Remember: always pop what you push
= Will produce lots of redundant, but correct, code

= Examples below follow code shape examples, but
with approximate gnu syntax — fix up as needed

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-13

Example: Generate Code for
i Constants and Identifiers

s Integer constants, say 17

gen(movl $17,%eax)
= leaves value In eax

= Variables (whether int, boolean, or
reference type)

gen(mov! var-offset(base-register),%eax)

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-14

Example: Generate Code for
expl + expl

= Visit expl

= generates code to evaluate expl and put result in eax
gen(pushl %eax)

= generate a push instruction

= Visit exp2

= generates code for exp2; result in eax

gen(popl Y%edx)

= pop left argument into edx; cleans up stack

gen(addl %edx,%eax)
= perform the addition; result in eax

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-15

i Example: var = exp; (1)

= Assuming that var is a local variable

= Visit node for exp

= Generates code that leaves the result of
evaluating exp Iin eax

= gen(movl %eax,variable-offset(%oebp))

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-16

i Example: var = exp; (2)

= If var Is a more complex expression
(object or array reference, for example)
= ViSit var

= gen(pushl %eax)

= push reference to variable or object containing
variable onto stack

= ViSIt exp
= gen(popl Y%edx)
= gen(movl %eax,appropriate offset(%edx))

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-17

i Example: return exp;

= Visit exp; leaves result in eax where it
should be

= Generate method epilogue to unwind
the stack frame; end with ret
Instruction

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-18

i Control Flow: Unique Labels

= Needed: a String-valued method that
returns a different label each time it is
called (e.qg., L1, L2, L3, ..., L42, ..)

= Variation: a set of methods that generate
different kinds of labels for different
constructs (can really help readability of
the generated code)

« (whilel, while2, while3, ...; Ifl, if2, ...; elsel,
else2, ...; fil, fi2,)

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-19

i Control Flow: Tests

= Recall the context for compiling a
boolean expression:

= Jump target
= Whether to jump if true or false

= SO Visitor for a boolean expression
needs this information from parent
node

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-20

i Example: while(exp) body

= Assuming we want the test at the
bottom of the generated loop...

= gen(jmp testLabel)
= gen(bodyLabel:)

= Visit body

= gen(testLabel:)

= Visit exp (condition) with target=bodyLabel
and sense=“jump if true”

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-21

i Example expl < exp2

= Similar to other binary operators

= Difference: context is a target label and whether to
jump if true or false

= Code
= Visit expl
= gen(pushl %eax)
= Visit exp2
= gen(popl %edx)
= gen(cmp %edx,%eax)
= gen(condjump targetLabel)
= appropriate conditional jump depends on sense of test

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-22

i Boolean Operators

= && and ||

= Create label needed to skip around second
operand when appropriate

= Generate subexpressions with appropriate
target labels and conditions

m lexp

= Generate exp with same target label, but
reverse the sense of the condition

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-23

i More to come...

= Still need to talk about methods,
dynamic dispatch, object creation, etc.

= See lecture slides

= Look at the codegen project writeup for
suggestions about how to start small
and build up to a complete compiller.

2/25/2010 © 2002-10 Hal Perkins & UW CSE M-24

