
CSE 401 – CompilersCSE 401 Compilers

Code Shape II – Objects & Classes
Hal Perkins
Winter 2010

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-1

Agenda
Object representation and layout
Field access
What is this?
Object creation - new
Method callsMethod calls

Dynamic dispatch
Method tables

Runtime type information

(As before more generality than we strictly need for the project)

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-2

(As before, more generality than we strictly need for the project)

What does this program print?
class One {

int tag;
int it;
void setTag() { tag = 1; }

public static void main(String[] args) {
Two two = new Two();
One one = two;

void setTag() { tag 1; }
int getTag() { return tag; }
void setIt(int it) {this.it = it;}
int getIt() { return it; }

}

one.setTag();
System.out.println(one.getTag());

one.setIt(17);}
class Two extends One {

int it;
void setTag() {

tag = 2; it = 3;

one.setIt(17);
two.setTag();
System.out.println(two.getIt());
System.out.println(two.getThat());
two.resetIt();tag 2; it 3;

}
int getThat() { return it; }
void resetIt() { super.setIt(42); }

}

two.resetIt();
System.out.println(two.getIt());
System.out.println(two.getThat());

}

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-3

} }

Your Answer Here

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-4

Object Representation
The naïve explanation is that an object contains

Fields declared in its class and in all superclasses
R d l i f fi ld hid l iRedeclaration of a field hides superclass instance

Methods declared in its class and all superclasses
Redeclaration of a method overrides (replaces)

But overridden methods can still be accessed by super.…

When a method is called, the method “inside” ,
that particular object is called

(But we really don’t want to copy all those methods, do we?)

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-5

Actual representation

Each object contains
An entry for each field (variable)
A pointer to a runtime data structure describing
the class

Key component: method dispatch tableKey component: method dispatch table

Basically a C struct
Fields hidden by declarations in extendedFields hidden by declarations in extended
classes are still allocated in the object and are
accessible from superclass methods

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-6

accessible from superclass methods

Method Dispatch Tables

Often known as “vtables”
One pointer per method – points toOne pointer per method – points to
beginning of method code
Dispatch table offsets fixed at compileDispatch table offsets fixed at compile
time

f h lOne instance of this per class, not per
object

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-7

Method Tables and
Inheritance

Simple implementation
Method table for extended class has pointers to
methods declared in itmethods declared in it
Method table also contains a pointer to parent
class method table
Method dispatch

Look in current table and use if method declared locally
Look in parent class table if not localLook in parent class table if not local
Repeat

Actually used in some dynamic systems (e.g.
SmallTalk Ruby etc)SmallTalk, Ruby, etc.)

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-8

O(1) Method Dispatch
Idea: First part of method table for extended
class has pointers for same methods in same
order as parent classorder as parent class

BUT pointers actually refer to overriding methods
if these exist
∴ Method dispatch is indirect using fixed offsets∴ Method dispatch is indirect using fixed offsets
known at compile time – O(1)

In C: *(object->vtbl[offset])(parameters)
Pointers to additional methods in extendedPointers to additional methods in extended
class are included in the table following
inherited/overridden ones

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-9

Method Dispatch Footnotes

Still want pointer to parent class
method table for other purposesmethod table for other purposes

Casts and instanceof

Multiple inheritance requires moreMultiple inheritance requires more
complex mechanisms

Also true for multiple interfacesAlso true for multiple interfaces

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-10

Perverse Example Revisited
class One {

int tag;
int it;
void setTag() { tag = 1; }

public static void main(String[] args) {
Two two = new Two();
One one = two;

void setTag() { tag 1; }
int getTag() { return tag; }
void setIt(int it) {this.it = it;}
int getIt() { return it; }

}

one.setTag();
System.out.println(one.getTag());

one.setIt(17);}
class Two extends One {

int it;
void setTag() {

tag = 2; it = 3;

one.setIt(17);
two.setTag();
System.out.println(two.getIt());
System.out.println(two.getThat());
two.resetIt();tag 2; it 3;

}
int getThat() { return it; }
void resetIt() { super.setIt(42); }

}

two.resetIt();
System.out.println(two.getIt());
System.out.println(two.getThat());

}

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-11

} }

Implementation

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-12

Now What?

Need to explore
Object layout in memory
Compiling field references

Implicit and explicit use of “this”

R t ti f t blRepresentation of vtables
Object creation – new
Code for dynamic dispatchCode for dynamic dispatch
Runtime type information – instanceof and casts

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-13

Object Layout

Typically, allocate fields sequentially
Follow processor/OS alignmentFollow processor/OS alignment
conventions when appropriate /
available
Use first word of object for pointer to
method table/class information
Objects are allocated on the heap

No actual bits in the generated code

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-14

g

Local Variable Field Access

Source
int n = obj.fld;j ;

X86
Assuming that obj is a local variable in theAssuming that obj is a local variable in the
current method

mov eax,[ebp+offsetobj] ; load obj ptr,[p obj] ; j p
mov eax,[eax+offsetfld] ; load fld
mov [ebp+offsetn],eax ; store n

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-15

Local Fields

A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
as “f”

Both compile to the same code – an implicit “this.”
is ass med if not p esent e plicitlis assumed if not present explicitly

Mechanism: a reference to the current object
is an implicit parameter to every methodis an implicit parameter to every method

Can be in a register or on the stack

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-16

Source Level View

When you write You really get

void setIt(ObjType thisvoid setIt(int it) {

this.it = it;

void setIt(ObjType this,
int it) {

this.it = it;
}

;
}
…
obj setIt(42);

}
…
setIt(obj,42);

obj.setIt(42);

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-17

x86 Conventions (C++)

ecx is traditionally used as “this”
Add to method call

mov ecx,receivingObject ; ptr to object

Do this after arguments are evaluated and
h d i ht b f d i di t h d th tpushed, right before dynamic dispatch code that

actually calls the method
Need to save ecx in a temporary or on the stack inNeed to save ecx in a temporary or on the stack in
methods that call other non-static methods

One possibility: add to prologue
F ll i l ’t f l b t thi

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-18

Following examples aren’t careful about this

x86 Local Field Access

Source
int n = fld; or int n = this.fld; ; ;

X86
mov eax,[ecx+offsetfld] ; load fldmov eax,[ecx+offsetfld] ; load fld
mov [ebp+offsetn],eax ; store n

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-19

x86 Method Tables (vtbls)
We’ll generate these in the assembly language
source program
Need to pick a naming convention for methodNeed to pick a naming convention for method
labels; we suggest:

For methods, classname$methodname
Would need something more sophisticated for overloadingWould need something more sophisticated for overloading

For the vtables themselves, classname$$
First method table entry points to superclass table
Also useful: second entry points to default (0Also useful: second entry points to default (0-
argument) constructor (if you have constructors)

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-20

Method Tables For Perverse
Example (Intel/Microsoft asm)
class One {

void setTag() { … }
int getTag() { … }
void setIt(int it) {…}

.data
One$$ dd 0 ; no superclass

dd One$One
dd One$setTagvoid setIt(int it) {…}

int getIt() { … }
}

class Two extends One {

dd One$setTag
dd One$getTag
dd One$setIt
dd One$getItclass Two extends One {

void setTag() { … }
int getThat() { … }
void resetIt() { … }

}

$g
Two$$ dd One$$; parent

dd Two$Two
dd Two$setTag
dd One$getTag} dd One$getTag
dd One$setIt
dd One$getIt
dd Two$getThat

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-21

dd Two$resetIt

Method Table Footnotes

Key point: First four non-constructor
method entries in Two’s method tablemethod entries in Two s method table
are pointers to methods declared in
One in exactly the same orderOne in exactly the same order
∴ Compiler knows correct offset for a

particular method pointer regardless of p p g
whether that method is overridden

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-22

Object Creation – new

Steps needed
Call storage manager (malloc or similar) to g g ()
get the raw bits
Store pointer to method table in the first 4
b t f th bj tbytes of the object
Call a constructor (with pointer to the new
object this in ecx)object, this, in ecx)
Result of new is pointer to the constructed
object

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-23

j

Object Creation
Source

One one = new One(…);
X86

h B t N d d bj i + 4push nBytesNeeded ; obj size + 4
call mallocEquiv ; addr of bits returned in eax
add esp,4 ; pop nBytesNeeded
lea edx,One$$; get method table address

[] d t t b t t b i i f bj tmov [eax],edx ; store vtab ptr at beginning of object
mov ecx,eax ; set up “this” for constructor
push ecx ; save ecx (constructor might clobber it)
<push constructor arguments> ; arguments (if needed)
call One$One call const cto (no tab look p needed)call One$One ; call constructor (no vtab lookup needed)
<pop constructor arguments> ; (if needed)
pop eax ; recover ptr to object
mov [ebp+offsetone],eax ; store object reference in variable one

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-24

Constructor

Only special issue here is generating
call to superclass constructorcall to superclass constructor

Same issues as super.method(…) calls –
we know the superclass name, so just p , j
generate a direct call to the appropriate
method.

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-25

Method Calls

Steps needed
Push arguments as usual
Put pointer to object in ecx (this)
Get pointer to method table from first 4 bytes of
bj tobject

Jump indirectly through method table
Restore ecx to point to current object (if needed)Restore ecx to point to current object (if needed)

Useful hack: push ecx in the function prologue so it is
always in the stack frame at a known location & reload
when needed if it might be clobbered

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-26

when needed if it might be clobbered

Method Call
Source

obj.meth(…);

X86X86
<push arguments from right to left> ; (as needed)
mov ecx,[ebp+offsetobj] ; get pointer to object,[p obj] ; g p j
mov eax,[ecx] ; get pointer to method table
call dword ptr [eax+offsetmeth] ; call indirect via method tbl
<pop arguments> ; (if needed)p p g ; ()
mov ecx,[ebp+offsetecxtemp] ; (if needed)

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-27

Runtime Type Checking
Use the method table for the class as a
“runtime representation” of the class
The test for “o instanceof C” isThe test for o instanceof C is

Is o’s method table pointer == &C$$?
If so, result is “true”

R i l t th l ’ th d t blRecursively, get the superclass’s method table
pointer from the method table and check that
Stop when you reach Object (or a null pointer,
depending on how you represent things)depending on how you represent things)

If no match when you reach the top of the chain, result
is “false”

Same test as part of check for legal downcastSame test as part of check for legal downcast

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-28

Coming Attractions

Code generation: register allocation,
instruction selection & schedulinginstruction selection & scheduling

Industrial-strength versions plus a simpler
“get it to work” scheme for our projectg p j

Code optimization

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-29

Addendum:
OS X x86 Function Calls

Apple requires that “the stack is 16-byte
aligned at the point of a function call”

Only seems to cause problems when calling
library functions – won’t matter within your
codecode
Suggestion: Adjust esp before pushing first
parameter to ensure esp is 16-byte aligned
ft ll t h dafter all parameters pushed

Reference: link to Apple’s documentation on
the course project web pagethe course project web page

2/25/2010 © 2002-10 Hal Perkins & UW CSE L-30

