LR Parsing
Hal Perkins
Winter 2010
Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts
LR(1) Parsing

- We’ll look at LR(1) parsers
 - Left to right scan, Rightmost derivation, 1 symbol lookahead
 - Almost all practical programming languages have an LR(1) grammar
 - LALR(1), SLR(1), etc. – subsets of LR(1)
 - LALR(1) can parse most real languages, tables are more compact, and is used by YACC/Bison/CUP/etc.
Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the *frontier*
Example

Grammar

\[
S ::= aABe \\
A ::= Abc | b \\
B ::= d
\]

Bottom-up Parse

```
a  b  b  c  d  e
```
The bottom-up parser reconstructs a reverse rightmost derivation.

Given the rightmost derivation:

\[S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w \]

the parser will first discover \(\beta_{n-1} \Rightarrow \beta_n \), then \(\beta_{n-2} \Rightarrow \beta_{n-1} \), etc.

Parsing terminates when:

- \(\beta_1 \) reduced to \(S \) (start symbol, success), or
- No match can be found (syntax error)
How Do We Parse with This?

- Key: given what we’ve already seen and the next input symbol, decide what to do.

- Choices:
 - Perform a reduction
 - Look ahead further

- Can reduce $A => \beta$ if both of these hold:
 - $A => \beta$ is a valid production
 - $A => \beta$ is a step in this rightmost derivation

- This is known as a *shift-reduce* parser
Sentential Forms

- If $S \Rightarrow^* \alpha$, the string α is called a *sentential form* of the grammar.

- In the derivation

 $S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w$

 each of the β_i are sentential forms.

- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential).
Handles

- Informally, a substring of the tree frontier that matches the right side of a production
 - Even if $A ::= \beta$ is a production, β is a handle only if it matches the frontier at a point where $A ::= \beta$ was used in that derivation
 - β may appear in many other places in the frontier without being a handle for that particular production
Handles (cont.)

- Formally, a *handle* of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ.
Handle Examples

In the derivation

\[S \Rightarrow aA\beta \Rightarrow aAde \Rightarrow aAbcde \Rightarrow abbcde \]

- abbcde is a right sentential form whose handle is \(A::=b \) at position 2
- aAbcde is a right sentential form whose handle is \(A::=Abc \) at position 4

Note: some books take the left of the match as the position
Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input
Shift-Reduce Parser

Operations

- **Reduce** – if the top of the stack is the right side of a handle $A::=\beta$, pop the right side β and push the left side A.
- **Shift** – push the next input symbol onto the stack
- **Accept** – announce success
- **Error** – syntax error discovered
Shift-Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
<td>shift</td>
</tr>
</tbody>
</table>

Production rules:

- $S ::= aABe$
- $A ::= Abc | b$
- $B ::= d$
How Do We Automate This?

- Def. *Viable prefix* – a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form
- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them
DFA for prefixes of $S ::= aA\overline{B}e$

$A ::= Abc \mid b$

$B ::= d$
\[S ::= aABe \]
\[A ::= Abc | b \]
\[B ::= d \]

Trace

Stack
\$
\$

Input
abbcde$

\[
\begin{array}{c}
1 & \xrightarrow{a} & 2 & \xrightarrow{b} & 4 & \xrightarrow{b} & 5 & \xrightarrow{d} & 6 & \xrightarrow{c} & 7 & \xrightarrow{c} & 8 & \xrightarrow{e} & 9 \\
\xrightarrow{\$} & & \xrightarrow{\$} \\
start & & A & & A & & B & & A & & A & & S ::= aABe & & A ::= Abc & & B ::= d
\end{array}
\]
Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We’ll defer construction details for now
Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top
 - ∴ Scanning the stack will take us through the same transitions as before until the last one
 - ∴ If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack
Stack

- Change the stack to contain pairs of states and symbols from the grammar
 \[s_0 \ X_1 \ s_1 \ X_2 \ s_2 \ \ldots \ X_n \ s_n \]
- State \(s_0 \) represents the accept state
 - (Not always added - depends on particular presentation)

- Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations it’s clearer to use both.
Encoding the DFA in a Table

- A shift-reduce parser’s DFA can be encoded in two tables
 - One row for each state
 - *action* table encodes what to do given the current state and the next input symbol
 - *goto* table encodes the transitions to take after a reduction
Actions (1)

- Given the current state and input symbol, the main possible actions are:
 - s/i – shift the input symbol and state i onto the stack (i.e., shift and move to state i)
 - r/j – reduce using grammar production j

 - The production number tells us how many $<\text{symbol, state}>$ pairs to pop off the stack
Actions (2)

- Other possible *action* table entries
 - *accept*
 - blank – no transition – syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens
Goto

- When a reduction is performed, <symbol, state> pairs are popped from the stack revealing a state *uncovered_s* on the top of the stack.

- **goto**[*uncovered_s* , A] is the new state to push on the stack when reducing production *A ::= β* (after popping *β* and revealing state *uncovered_s* on top).
Reminder: DFA for

\[S ::= aA\text{Be} \]
\[A ::= Abc \mid b \]
\[B ::= d \]

\[A ::= b \]
\[B ::= d \]
LR Parse Table for

1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

<table>
<thead>
<tr>
<th>State</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>

1/12/2010 © 2002-10 Hal Perkins & UW CSE D-26
LR Parsing Algorithm (1)

```java
word = scanner.getToken();
while (true) {
    s = top of stack;
    if (action[s, word] = s/i) {
        push word; push i (state);
        word = scanner.getToken();
    } else if (action[s, word] = r/j) {
        pop 2 * length of right side of production j (2*|β|);
        uncovered_s = top of stack;
        push left side A of production j;
        push state goto[uncovered_s, A];
    } else if (action[s, word] = accept) {
        return;
    } else {
        // no entry in action table
        report syntax error;
        halt or attempt recovery;
    }
}
```
1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

Example

Stack
$\$

Input
abbcde$

<table>
<thead>
<tr>
<th>S</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>s5</td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - *Where* we are in the right hand side of each of those productions
Items

- An *item* is a production with a dot in the right hand side.
- Example: Items for production $A ::= XY$

 $A ::= .XY$

 $A ::= X.Y$

 $A ::= XY.$

- Idea: The dot represents a position in the production.
\[S ::= aA\vec{e} \]
\[A ::= Abc \mid b \]
\[B ::= d \]

DFA for

1. \[S ::= .aA\vec{e} \]
2. \[S ::= a.A\vec{e} \]
3. \[S ::= aA.A\vec{e} \]
4. \[A ::= b. \]
5. \[B ::= d. \]
6. \[A ::= Ab.c \]
7. \[A ::= Abc. \]
8. \[S ::= aA.B.e \]
9. \[S ::= aA.B.e. \]
Problems with Grammars

- Grammars can cause problems when constructing a LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts
Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)

- Classic example: if-else statement
 \[S ::= \text{ifthen } S \mid \text{ifthen } S \text{ else } S \]
1. $S ::= \text{ifthen } S$
2. $S ::= \text{ifthen } S \text{ else } S$

- **State 3 has a shift-reduce conflict**
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)

$S ::= \text{ifthen } S$

(Note: other $S ::= \text{ifthen}$ items not included in states 2-4 to save space)
Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a “longest match” rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want
Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

\[
S ::= A \\
S ::= B \\
A ::= x \\
B ::= x
\]
Parser States for

1. $S ::= A$
2. $S ::= B$
3. $A ::= x$
4. $B ::= x$

State 2 has a reduce-reduce conflict (r3, r4)
Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.

Fixes

- Use a different kind of parser generator that takes lookahead information into account when constructing the states
 - Most practical tools use this information
- Fix the grammar
Another Reduce-Reduce Conflict

- Suppose the grammar separates arithmetic and boolean expressions

 \[
 \begin{align*}
 \text{expr} & ::= \text{aexp} \mid \text{bexp} \\
 \text{aexp} & ::= \text{aexp} \ast \text{aident} \mid \text{aident} \\
 \text{bexp} & ::= \text{bexp} \&\& \text{bident} \mid \text{bident} \\
 \text{aident} & ::= \text{id} \\
 \text{bident} & ::= \text{id}
 \end{align*}
 \]

- This will create a reduce-reduce conflict
Covering Grammars

- A solution is to merge `aident` and `bident` into a single non-terminal (or use `id` in place of `aident` and `bident` everywhere they appear)
- This is a *covering grammar*
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later
Coming Attractions

- Constructing LR tables
 - We’ll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 3