
CSE 401 – CompilersCSE 401 Compilers

Threads and Memory Models
Guest Lecture by Dan Grossman
Winter 2010, Last Day of Class

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-1

References
� Threads Cannot Be Implemented as a Library

Boehm, PLDI 2005

� Foundations of the C++ Concurrency Memory Model
Boehm and Adve, PLDI 2008

� The Java Memory Model
Manson, Pugh, and Adve, POPL 2005, g , ,

Credits: Earlier versions of lecture by
Vijay Menon CSE 501 Sp09Vijay Menon, CSE 501, Sp09
Hal Perkins, CSE P501, Au09

3/14/2010 X3-2© 2002-09 Hal Perkins & UW CSE

Threads and shared memory

� Multithreading lets multiple threads run concurrently
� Each thread has its own local variables (stack and

registers), but...
� All threads share one memory

l b l / t ti + h bj t� globals / statics + heap objects
� Use memory to communicate ☺ or interfere /

� Becoming more common to exploit multicore hardware� Becoming more common to exploit multicore hardware
� Basic use / issues: CSE303, CSE378, CSE451

� New: CSE332, CSE333, maybe CSE331, , y

3/14/2010 X3-3© 2002-09 Hal Perkins & UW CSE

Naïve view

The following almost works
1. Define your programming language “as usual”

� Don’t think about > 1 thread

2. Compile the code like you’ve learned all quarter
Don’t think about > 1 thread� Don t think about > 1 thread

3. Provide a run-time library that provides threading
� Create thread
� Create/acquire/release mutual-exclusion locks
� Etc.

4 Profit4. Profit

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-4

This lecture in one slide
The naïve approach, followed for decades, is fatally flawed
� Compiler must know threads & shared-memory exist

El it f i t ti i ti� Else it may perform incorrect optimizations
� Programmer must know threads & shared-memory exist

� The natural definition (“sequential consistency”) of how
shared-memory works (“the memory model”) is not tractably
implementable by compilers or hardware

� So we have less-natural weaker definitions to make language
implementation easier. Usually defined so that:
� If programmers avoid data races then they can ignore this
� Most compiler optimizations remain legalp p g

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-5

Safety of optimization

The standard rule for optimization:
If, in some program context, the result of , p g ,
evaluating e1 cannot be distinguished from the
result of evaluating e2, the compiler can substitute
e2 for e1 in that contexte2 for e1 in that context

Now: Three gotchas that arise only with multiple
threads and shared memorythreads and shared memory
� Examples use global variables to keep them short; same

issues arise with shared objects in the heap
E l ill l ti i ti i J� Examples are illegal optimizations in, e.g., Java

3/14/2010 X3-6© 2002-09 Hal Perkins & UW CSE

Gotcha #1: Speculation
(Probably the least common / well-motivated, but the

easiest to understand)

// x and y are globals, initially 0

void foo() {
++x;
if(y==1)if(y 1)
++x;

}

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-7

Gotcha #1: Speculation

// x and y are globals, initially 0

void foo() { optimized void foo() { () { p () {
++x; ========> x += 2;
if(y==1) if(y!=1)
++x; --x;++x; x;

} }

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-8

Before optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() { void bar() {
++x; if(x==2)
if(y==1) commence evil();y _
++x; }

}

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-9

After optimization

//// x and y are globals, initially 0

Thread 1 Thread 2

void foo() { void bar() {
x += 2; if(x==2)
if(y!=1) commence_evil();
--x; }

} }

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-10

Recap

So our compiler made a change that:
� Is legal for all single-threaded programsg g p g
� Caused execution to “make up” a new value for x

So either:
� Our compiler must not do this (thread-aware)

O h l d fi i i ll hi� Or we must change our language definition to allow this
(bad idea in this example)

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-11

Gotcha #2:Register promotion

// x is global, initially 0

void foo(int* a, int n) {
for(int i=0; i<n; ++i)

x += a[i];
}}

void foo(int* a, int n) {
int reg = x; g ;
for(int i=0; i<n; ++i)

reg += a[i];
x = reg;

3/14/2010 X3-12© 2002-09 Hal Perkins & UW CSE

}

Before optimization

// x is global, initially 0

// Thread 1 // Thread 2// Thread 1

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)

// Thread 2

void bar() {
x = 10;for (int i = 0; i < n; ++i)

x += a[i];
}

x 10;
...

}

What happens when n == 0?

3/14/2010 X3-13© 2002-09 Hal Perkins & UW CSE

After optimization

// x is global, initially 0

// Th d 1 // Thread 2// Thread 1

void foo(int* a, int n) {
int reg = x;

// Thread 2

void bar() {
x = 10;int reg = x;

for (int i = 0; i < n; ++i)
reg += a[i];

x = reg;

x = 10;
...

}
g;

}

What happens (sometimes) when n == 0?

3/14/2010 X3-14© 2002-09 Hal Perkins & UW CSE

Recap
In executions where n==0, the compiler
optimization can “lose an update”

� Original code: x==10 is guaranteed for code
ft b th th d fi i hafter both threads finish

� Optimized code: new write of x = 0 creates� Optimized code: new write of x = 0 creates
new possible result

3/14/2010 X3-15© 2002-09 Hal Perkins & UW CSE

Gotcha #3:Adjacent data

h [4]
Natural assembly for body:
movb $0 arrchar arr[4];

void foo() {
arr[0] = (char)0;

movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

arr[0] = (char)0;
arr[1] = (char)0;
arr[2] = (char)0;

}

Assembly with one store:
movl _arr, %eax}
andl $0x000000FF, %eax
movl %eax, _arr

3/14/2010 X3-16© 2002-09 Hal Perkins & UW CSE

Before optimization

char arr[4];

// Thread 1:
movb $0, _arr

b $0 +1

// Thread 2
// arr[3] = ‘a’;
movb $98 arr+3movb $0, _arr+1

movb $0, _arr+2

movb $98, _arr+3

3/14/2010 X3-17© 2002-09 Hal Perkins & UW CSE

After optimization

char arr[4];

// Thread 1:
movl _arr, %eax
andl $0x000000FF %eax

// Thread 2
// arr[3] = ‘a’;
movb $98 arr+3andl $0x000000FF, %eax

movl %eax, _arr
movb $98, _arr+3

3/14/2010 X3-18© 2002-09 Hal Perkins & UW CSE

Recap
The clever compiler is adding the assignment

“arr[3]=arr[3];”
� That’s fine in single-threaded code

In practice, this is a problem if:
� Your architecture doesn’t have byte-stores

� Leave space between string characters??
Y h bi fi ld i C (d bi)� You have bit-fields in C (and no bit-stores)
� C++ specifically allows the “clever” code because there is

no other way (so programmer must avoid simultaneous
write to bit-fields in same struct)

3/14/2010 X3-19© 2002-09 Hal Perkins & UW CSE

Where are we
� So far have emphasized that the compiler must limit

itself in order to be correct in the presence of threads
Thi i 401 ft ll� This is 401 after all

� You should also understand that the programmer
t t i t iti l d fi itimust accept unintuitive language definitions

� Otherwise efficient compiler/hardware too difficult
� Simple answer: Never write code with a data race� Simple answer: Never write code with a data race
� Must discuss memory-consistency models

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-20

Dekker’s example
� Initially, x==0 && y==0

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

� What are possible executions?

r1 y; (b) r2 x; (d)

� What are possible executions?

3/14/2010 X3-21© 2002-09 Hal Perkins & UW CSE

Dekker’s example
� Initially, x==0 && y==0

Thread 1 Thread 2
x = 1; (a)
r1 = y; (b)

y = 1; (c)
r2 = x; (d)

� What are possible executions?
� Consider interleavings of thread 1 & 2:

� abcd, acbd, acdb, cdab, cadb, cabd
� (24 permutations, but need a before b and c

before d)before d)

3/14/2010 X3-22© 2002-09 Hal Perkins & UW CSE

Dekker’s example
� Initially, x==0 && y==0

Thread 1 Thread 2

Can 1 0 && 2 0 ?

x = 1;
r1 = y;

y = 1;
r2 = x;

� Can r1 == 0 && r2 == 0 ?
� No interleaving gives this results, but...
� Most hardware will allow it� Most hardware will allow it

� Store buffers; see CSE471

� Most compilers will allow it
� Why...

3/14/2010 X3-23© 2002-09 Hal Perkins & UW CSE

Compiler reordering

� Almost every compiler optimization has the implicit
effect of reordering reads and writes!
� Obvious example: Instruction scheduling
� Less-obvious example: Common-subexpression

eliminationelimination x=a+b;
y=a;
z=a+b; //optimize to z=x

Replacing with z=x has the effect of
moving the store to z to before the store to y!

ld l t it t b th th d th� y could see a later write to a by another thread than z sees

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-24

Sequential consistency
� The interleaving model is called sequential

consistency and was defined in 1979 by Lamport:
"... the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each q , p
individual processor appear in this sequence in the
order specified by its program."
B t “ l” h d il i l t it� But no “real” hardware or compiler implements it

� So we have to tell programmers what they can
assumeassume

3/14/2010 X3-25© 2002-09 Hal Perkins & UW CSE

Refined notion
� Guarantee sequential consistency only for

correctly synchronized programs (Adve)
� Give the programmer rules to follow
� Promise interleaving semantics if rules are

obeyedobeyed
� Correctly synchronized

� Must be intuitive to programmerp g
� Must not be restrictive for compiler/hardware

3/14/2010 X3-26© 2002-09 Hal Perkins & UW CSE

Data races

� Two operations conflict if they both access a
memory location and one is a write

� A execution contains a data race if two adjacent
operations from two different threads conflict

� x = 1; y = 1; r1 = y; r2 = x;

� A program is data-race-free if no sequentially
consistent execution (i.e., interleaving) has a data
race

3/14/2010 X3-27© 2002-09 Hal Perkins & UW CSE

Correct synchronization

� We call a program correctly synchronized if it is
data race free

� Basic contract – “The Grand Compromise”:
If it d t f� If programmers write data-race-free programs,
implementers will provide sequentially consistent
semantics

� This is the fundamental property of the Java
and C++ memory models

3/14/2010 X3-28© 2002-09 Hal Perkins & UW CSE

How do we avoid races?

� Mutual exclusion:
� Thread acquires lock before accessing a shared

variable
� Locks exist to avoid races

Thread 1 Thread 2
lock (mutex);
tmp1 = x;
tmp2 = tmp1 + 1;
x = tmp2

lock (mutex);
tmp3 = x;
tmp4 = tmp3 + 1;
x = tmp4

� Java’s volatile variables (atomics in C++)
D t ll d il ’t d

p
unlock (mutex);

p
unlock (mutex);

� Data races allowed; compiler can’t reorder

3/14/2010 X3-29© 2002-09 Hal Perkins & UW CSE

What this means for compilers
� In the absence of synchronization, compilers may

almost operate as if programs were single-
threadedthreaded

� Compilers must respect ordering due to
synchronization (locks, volatiles, etc.)
� Even if “hidden” inside a function/method call

� Compilers must not introduce data races into
correctly synchronized code co ect y sy c o ed code
� This is why Gotchas #2 and #3 are illegal for

compilers!
They add writes that race with the program!� They add writes that race with the program!

3/14/2010 X3-30© 2002-09 Hal Perkins & UW CSE

What happens on a race?
� In C++, undefined semantics

Thread 1
()

Thread 2

� Valid results:

x = 1; (a)
r1 = y; (b)

y = 1; (c)
r2 = x; (d)

� Valid results:
� r1 == 0 and r2 == 0
� r1 == 0 and r2 == 42

t (f /*)� system(rm –rf /*);
� No such thing as a benign data race in C++!

� Hence Gotcha #1 is legal in C++ because the g
original program had a data race

3/14/2010 X3-31© 2002-09 Hal Perkins & UW CSE

Type-safety issues
� In Java, data races cannot violate type safety

� Java promises a measure of security
� Cannot allow data races to be used on purpose

by untrusted code to open / exploit holes
� Java memory model must provide some� Java memory model must provide some

guarantees even in the presence of races
� Gotcha #1 is illegal in Java; cannot make up

values

3/14/2010 X3-32© 2002-09 Hal Perkins & UW CSE

Java reality
� The actual “memory model” (what can and can’t

happen with reads/writes) is very complicated
� Took years by brilliant people and still had� Took years by brilliant people and still had

problems
� Programmers willing to avoid data races do not

need to nde stand the definitionneed to understand the definition
� There is a theorem about the definition that all data-race

free programs behave as in the interleaving semantics
B t il it t id t h� But compiler writers must avoid gotchas
� Very roughly speaking, don’t make up values or introduce

data races

3/14/2010 X3-33© 2002-09 Hal Perkins & UW CSE

This lecture in one slide
The naïve approach, followed for decades, is fatally flawed
� Compiler must know threads & shared-memory exist

El it f i t ti i ti� Else it may perform incorrect optimizations
� Programmer must know threads & shared-memory exist

� The natural definition (“sequential consistency”) of how
shared-memory works (“the memory model”) is not tractably
implementable by compilers or hardware

� So we have less-natural weaker definitions to make language
implementation easier. Usually defined so that:
� If programmers avoid data races then they can ignore this
� Most compiler optimizations remain legalp p g

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-34

