
12/9/2010 © 2002-10 Hal Perkins & UW CSE X-1

CSE 401 – Compilers

Dynamic Languages
Hal Perkins

Autumn 2010



References
An Efficient Implementation of Self, a 
dynamically-typed object-oriented 
language based on prototypes                     
Chambers, Unger, Lee, OOPSLA 1989

Slides by Vijay Menon, CSE 501, Sp09, 
adapted from slides by Kathleen Fisher

12/9/2010 X-2© 2002-10 Hal Perkins & UW CSE



Dynamic Typing

JavaScript:

function foo(a, b) {

t1 = a.x;     // runtime field lookup 
t2 = b.y();   // runtime method lookup 
t3 = t1 + t2; // runtime dispatch on ‘+’
return t3;
}

12/9/2010 X-3© 2002-10 Hal Perkins & UW CSE



Overview

Self
20+ year old research language
One of earliest JIT compilation systems
Pioneered techniques used today

JavaScript
Self with a Java syntax
Much recent work to optimize

12/9/2010 X-4© 2002-10 Hal Perkins & UW CSE



Self
Prototype-based pure object-oriented 
language. 
Designed by Randall Smith (Xerox PARC) and 
David Ungar (Stanford University)

Successor to Smalltalk-80
“Self: The power of simplicity” appeared at 
OOPSLA ‘87
Initial implementation done at Stanford; then 
project shifted to Sun Microsystems Labs
Vehicle for implementation research

Self 4.3 available from Sun Oracle web site; 
Self 4.4 from selflanguage.org

12/9/2010 © 2002-10 Hal Perkins & UW CSE X-5



Occam’s Razor: Conceptual economy
Everything is an object
Everything done using messages
No classes 
No variables

Concreteness
Objects should seem “real”
GUI to manipulate objects directly

Design Goals

12/9/2010 X-6© 2002-10 Hal Perkins & UW CSE



How successful?

Self is a very well-designed language.
Few users: not a popular success

Not clear why
However, many research innovations

Very simple computational model
Enormous advances in compilation 
techniques
Influenced the design of Java compilers

12/9/2010 © 2002-10 Hal Perkins & UW CSE X-7



Language Overview
Dynamically typed
Everything is an object
All computation via message passing
Creation and initialization done by copying 
example object
Operations on objects:

send messages
add new slots
replace old slots
remove slots

12/9/2010 © 2002-10 Hal Perkins & UW CSE X-8



Objects and Slots

Object consists of named slots
Data

Such slots return contents upon evaluation; so 
act like variables

Assignment
Set the value of                                            
associated slot

Method 
Slot contains Self code

Parent
References existing object to inherit slots

12/9/2010 X-9© 2002-10 Hal Perkins & UW CSE



Messages and Methods
When message is sent, 
object searched for slot with 
name
If none found, all parents 
are searched

Runtime error if more than 
one parent has a slot with the 
same name

If slot is found, its contents 
evaluated and returned

Runtime error if no slot found

parent*

x 3

x: ←

parent*

print …

clone …

12/9/2010 X-10© 2002-10 Hal Perkins & UW CSE



Messages and Methods

parent*

x 3

x: ←

parent*

print …

clone …

obj x 3

obj print print point 
object

obj x: 4 obj
after setting 
x to 4.

12/9/2010 X-11© 2002-10 Hal Perkins & UW CSE



Mixing State and Behavior
parent* …

+ add points

x 4

y 17

x: ←

parent*

y: ←

x random 
number 
generator

y o

parent*

y: ←

12/9/2010 X-12© 2002-10 Hal Perkins & UW CSE



Object Creation

To create an object,   
we copy an old one
We can add new 
methods, override
existing ones, or even 
remove methods

• These operations also apply to parent slots

12/9/2010 X-13© 2002-10 Hal Perkins & UW CSE



Changing Parent Pointers

parent*: ←

name Charles

name: ←

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance.

p

princefrog

12/9/2010 X-14© 2002-10 Hal Perkins & UW CSE



Changing Parent Pointers

parent*: ←

name Charles

name: ←

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance

p

princefrog

12/9/2010 X-15© 2002-10 Hal Perkins & UW CSE



Disadvantages of classes?

Classes require programmers to understand a 
more complex model

To make a new kind of object, we have to create a 
new class first
To change an object, we have to change the class
Infinite meta-class regression

But: Does Self require programmer to reinvent 
structure?

Common to structure Self programs with traits:
objects that simply collect behavior for sharing

12/9/2010 X-16© 2002-10 Hal Perkins & UW CSE



C++ 
Restricts expressiveness to ensure efficient 
implementation

Self 
Provides unbreakable high-level model of 
underlying machine
Compiler does fancy optimizations to obtain 
acceptable performance

Contrast with C++

12/9/2010 X-17© 2002-10 Hal Perkins & UW CSE



Implementation Challenges I

Many, many slow function calls:
Function calls generally somewhat expensive
Dynamic dispatch makes message invocation even 
slower than typical procedure calls
OO programs tend to have lots of small methods
Everything is a message: even variable access! 

“The resulting call density of pure object-oriented 
programs is staggering, and brings naïve implementations 
to their knees” [Chambers & Ungar, PLDI 89]

12/9/2010 X-18© 2002-10 Hal Perkins & UW CSE



No static type system
Each reference could point to any object, 
making it hard to find methods statically

No class structure to enforce sharing 
Each object having a copy of its methods 
leads to space overheads

Implementation Challenges II

Optimized Smalltalk-80 roughly 10 times 
slower than optimized C

12/9/2010 X-19© 2002-10 Hal Perkins & UW CSE



Avoid per object space requirements
Compile, don’t interpret
Avoid method lookup
Inline methods wherever possible

Saves method call overhead
Enables further optimizations

Optimization Strategies

12/9/2010 X-20© 2002-10 Hal Perkins & UW CSE



Clone Families
Avoid per object data

Mutable

Fixed

prototype

Mutable

Fixed

Mutable

Fixed

Mutable

Fixed

Mutable

Fixed

clone family

Mutable

Map

Mutable

Map
Map

Map

Mutable
Mutable

Fixed InfoModel

Implementation

map

X-2112/9/2010 © 2002-10 Hal Perkins & UW CSE



Dynamic Compilation

Avoid interpreting

LOAD R0
MOV R1 2
ADD R1 R2
…

010010100
100110001
001011010
00110

Source Byte Code Machine Code

Method
is entered

First
method 
execution

• Method is converted to byte codes when entered
• Compiled to machine code when first executed
• Code stored in cache

• if cache fills, previously compiled method flushed
• Requires entire source (byte) code to be available

12/9/2010 X-22© 2002-10 Hal Perkins & UW CSE



Avoid method lookup

Lookup Cache

Cache of recently used methods, indexed 
by (receiver type, message name) pairs
When a message is sent, compiler first 
consults cache

if found: invokes associated code
if absent: performs general lookup and 
potentially updates cache

Berkeley Smalltalk would have been 37% 
slower without this optimization 

12/9/2010 X-23© 2002-10 Hal Perkins & UW CSE



Static Type Prediction
Compiler predicts types that are unknown 
but likely:

Arithmetic operations (+, -, <, etc.) have small 
integers as their receivers 95% of time in 
Smalltalk-80
ifTrue had Boolean receiver 100% of the time

Compiler inlines code (and test to confirm 
guess): 

if type = smallInt jump to method_smallInt
call general_lookup

Avoid method lookup

12/9/2010 X-24© 2002-10 Hal Perkins & UW CSE



Avoid method lookup

Inline Caches

First message send from a call site:
general lookup routine invoked
call site back-patched

is previous method still correct?
yes: invoke code directly
no: proceed with general lookup & backpatch

Successful about 95% of the time
All compiled implementations of Smalltalk 
and Self use inline caches

12/9/2010 X-25© 2002-10 Hal Perkins & UW CSE



Avoid method lookup

Polymorphic Inline Caches
Typical call site has <10 distinct receiver types

So often can cache all receivers
At each call site, for each new receiver, extend 
patch code:

After some threshold, revert to simple inline cache 
(megamorphic site)
Order clauses by frequency
Inline short methods into PIC code

if type = rectangle jump to method_rect
if type = circle    jump to method_circle
call general_lookup

12/9/2010 X-26© 2002-10 Hal Perkins & UW CSE



Inline methods

Customized Compilation

Compile several copies of each method, 
one for each receiver type
Within each copy:

Compiler knows the type of self
Calls through self can be statically selected 
and inlined

Enables downstream optimizations
Increases code size

12/9/2010 X-27© 2002-10 Hal Perkins & UW CSE



Inline methods

Type Analysis

Constructed by compiler by flow analysis
Type: set of possible maps for object 

Singleton: know map statically
Union/Merge: know expression has one of a 
fixed collection of maps
Unknown: know nothing about expression

If singleton, we can inline method
If type is small, we can insert type test 
and create branch for each possible 
receiver (type casing)

12/9/2010 X-28© 2002-10 Hal Perkins & UW CSE



Inline methods

Message Splitting

Type information above a 
merge point is often better
Move message send “before” 
merge point:

duplicates code
improves type information
allows more inlining

12/9/2010 X-29© 2002-10 Hal Perkins & UW CSE



Inline methods

PICS as Type Source
Polymorphic inline caches build a call-site 
specific type database as the program runs
Compiler can use this runtime information 
rather than the result of a static flow analysis 
to build type cases
Must wait until PIC has collected information.

When to recompile?
What should be recompiled?

Initial fast compile yielding slow code; then 
dynamically recompile hotspots

12/9/2010 X-30© 2002-10 Hal Perkins & UW CSE



Performance Improvements

Initial version of Self was 4-5 times slower than 
optimized C
Adding type analysis and message splitting got 
within a factor of 2 of optimized C
Replacing type analysis with PICS improved 
performance by further 37%

Current Self compiler is within a factor of 2 
of optimized C.

12/9/2010 X-31© 2002-10 Hal Perkins & UW CSE



Impact on Java

Self with
PICs

Animorphics
Java

Java 
Hotspot

Sun cancels Self

Java becomes popular

Sun buys A.J.

Animorphics
Smalltalk

12/9/2010 X-32© 2002-10 Hal Perkins & UW CSE



“Power of simplicity”
Everything is an object: no classes, no variables 
Provides high-level model that can’t be violated 
(even during debugging)

Fancy optimizations recover reasonable 
performance
Many techniques now used in Java compilers 
Papers describing various optimization 
techniques available from Self web site

Summary of Self

12/9/2010 X-33© 2002-10 Hal Perkins & UW CSE



JavaScript

Self-like language with Java syntax
Dynamic OO language
Prototypes instead of classes
Nothing to do with Java beyond syntax

Originated in Netscape

“Standard” on today’s browsers

12/9/2010 X-34© 2002-10 Hal Perkins & UW CSE



V8 (Google Chrome)

Three primary features
Fast property access

Hidden classes
Dynamic compiler

Compile on first invocation
Inline caching with back patching

Generational garbage collection
Segmented by types

See http://code.google.com/apis/v8/design.html

12/9/2010 X-35© 2002-10 Hal Perkins & UW CSE



High-performance JavaScript

Self approach:
V8 (Google Chrome)
SquirrelFish Extreme (Safari / WebKit)

Trace compilation:
TraceMonkey (Firefox)
Tamarin (Adobe Flash/Flex)

No time to cover; see Tracing for web 3.0, Chang 
et al, Virtual Execution Environments 2009, etc.

12/9/2010 X-36© 2002-10 Hal Perkins & UW CSE


