
12/5/2010 © 2002-10 Hal Perkins & UW CSE O-1

CSE 401 – Compilers

Survey of Code Optimizations
Hal Perkins

Autumn 2010



Agenda

Survey some code “optimizations” 
(improvements)

Get a feel for what’s possible

Some organizing concepts
Basic blocks
Control-flow and dataflow graph

12/5/2010 © 2002-10 Hal Perkins & UW CSE O-2



Optimizations
Use added passes to identify inefficiencies in 
intermediate or target code 
Replace with equivalent (“has the same externally 
visible behavior”) but better sequences 
Target-independent optimizations best done on IL 
code 
Target-dependent optimizations best done on 
target code 
“Optimize” overly optimistic: “usually improve” is 
generally more accurate

And “clever” programmers can outwit you!



An example
x = a[i] + b[2]; 
c[i] = x - 5;

t1 = *(fp + ioffset);  // i 
t2 = t1 * 4; 
t3 = fp + t2; 
t4 = *(t3 + aoffset);  // a[i] 
t5 = 2; 
t6 = t5 * 4; 
t7 = fp + t6; 
t8 = *(t7 + boffset);  // b[2] 
t9 = t4 + t8; *(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x 
t11 = 5; 
t12 = t10 - t11; 
t13 = *(fp + ioffset); // i 
t14 = t13 * 4; 
t15 = fp + t14; 
*(t15 + coffset) = t12; // c[i] := …



Kinds of optimizations
peephole: look at adjacent instructions 
local: look at straight-line sequence of statements 
intraprocedural: look at whole procedure

Commonly called “global”
interprocedural: look across procedures

“whole program” analysis
“link time optimization” is a version of this

Larger scope => usually better optimization but 
more cost and complexity

Analysis is often less precise because of more 
possibilities



Peephole Optimization

After target code generation, look at 
adjacent instructions (a “peephole” on 
the code stream) 

try to replace adjacent instructions with 
something faster 

sw $8,  12($fp) 
lw $12, 12($fp)

sw $8,  12($fp) 
mv $12, $8



More Examples: 68K

One way to do complex instruction selection

sub sp, 4, sp 
mov r1, 0(sp) 

mov r1, -(sp) 

mov 12(fp), r1 
add r1, 1, r1 
mov r1, 12(fp)

inc 12(fp)



Peephole Optimization of 
Jumps

Eliminate jumps to jumps
Eliminate jumps after conditional branches 
“Adjacent” instructions = “adjacent in control 
flow” 
Source code 
if (a < b) { 

if (c < d) { // do nothing
} else {

stmt1; 
} 

} else { 
stmt2;

} 



Algebraic Simplification
“constant folding”, “strength reduction” 

z = 3 + 4; 
z = x + 0; 
z = x * 1; 
z = x * 2; 
z = x * 8; 
z = x / 8; 

double x, y, z; 
z = (x + y) - y; 

Can be done by peephole optimizer, or by code generator
Why do these examples happen?



Local Optimizations
Analysis and optimizations within a basic block 
Basic block: straight-line sequence of 
statements 

no control flow into or out of middle of sequence 
Better than peephole 
Not too hard to implement 

Machine-independent, if done on intermediate 
code



Local Constant Propagation

If variable assigned a constant, replace 
downstream uses of the variable with 
constant 
Can enable more constant folding 

Code; unoptimized intermediate code: 

final int count = 10; 
... 
x = count * 5; 
y = x ^ 3; 

t1 = 10; 
t2 = 5; 
t3 = t1 * t2; 
x = t3; 
t4 = x; 
t5 = 3; 
t6 = exp(t4, t5); 
y = t6; 



Local Dead Assignment 
Elimination

If l.h.s. of assignment never referenced again before 
being overwritten, then can delete assignment 

Why would this happen?  
Clean-up after previous optimizations, often

final int count = 10; 
... 
x = count * 5; 
y = x ^ 3; 
x = 7;

t1 = 10; 
t2 = 5; 
t3 = 50; 
x = 50; 
t4 = 50; 
t5 = 3; 
t6 = 125000; 
y = 125000; 
x = 7; 

Intermediate code after constant propagation



Local Common Subexpression 
Elimination

Avoid repeating the same calculation 
Eliminate redundant loads
Keep track of available expressions

... a[i] + b[i] ...
t1 = *(fp + ioffset); 
t2 = t1 * 4; 
t3 = fp + t2; 
t4 = *(t3 + aoffset); 
t5 = *(fp + ioffset); 
t6 = t5 * 4; 
t7 = fp + t6; 
t8 = *(t7 + boffset); 
t9 = t4 + t8;



Intraprocedural optimizations
Enlarge scope of analysis to whole 
procedure 

more opportunities for optimization 
have to deal with branches, merges, and loops 

Can do constant propagation, common 
subexpression elimination, etc. at “global” 
level 
Can do new things, e.g. loop optimizations 
Optimizing compilers usually work at this 
level  (-O2)



Code Motion
Goal: move loop-invariant calculations out of loops 
Can do at source level or at intermediate code level

for (i = 0; i < 10; i = i+1) { 
a[i] = a[i] + b[j]; 
z = z + 10000; 

}

t1 = b[j]; 
t2 = 10000; 
for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + t1; 
z = z + t2; 

} 



Code Motion at IL
for (i = 0; i < 10; i = i+1) { 
a[i] = b[j]; 

} 
*(fp + ioffset) = 0; 
label top; 
t0 = *(fp + ioffset); 
iffalse (t0 < 10) goto done; 
t1 = *(fp + joffset); 
t2 = t1 * 4; 
t3 = fp + t2; 
t4 = *(t3 + boffset); 
t5 = *(fp + ioffset); 
t6 = t5 * 4; 
t7 = fp + t6; *(t7 + aoffset) = t4; 
t9 = *(fp + ioffset); 
t10 = t9 + 1; 
*(fp + ioffset) = t10; 
goto top; 

label done;

Unoptimized 
intermediate 

code



Loop Induction Variable 
Elimination

For-loop index is induction variable 
incremented each time around loop 
offsets & pointers calculated from it 

If used only to index arrays, can rewrite with pointers 
compute initial offsets/pointers before loop 
increment offsets/pointers each time around loop 
no expensive scaling in loop
can then do loop-invariant code motion 

for (i = 0; i < 10; i = i+1) { 
a[i] = a[i] + x; 

} 
=> transformed to

for (p = &a[0]; p < &a[10]; p = p+4) { 
*p = *p + x; 

} 



Interprocedural Optimization

Expand scope of analysis to procedures 
calling each other 
Can do local & intraprocedural 
optimizations at larger scope 
Can do new optimizations, e.g. inlining 



Inlining: replace call with body
Replace procedure call with body of called procedure 
Source: 

final double pi = 3.1415927; 
double circle_area(double radius) { 

return pi * (radius * radius); 
} 
... 
double r = 5.0; 
... 
double a = circle_area(r); 

After inlining: 
... 
double r = 5.0; 
... 
double a = pi * r * r;

(Then what?)



Intraprocedural (Global) 
Optimizations

Need a convenient representation of procedure body
Control flow graph (CFG) captures flow of control 

nodes are IL statements, or whole basic blocks 
edges represent (all possible) control flow 
node with multiple successors = branch/switch 
node with multiple predecessors = merge 
loop in graph = loop 

Data flow graph (DFG) capture flow of data, e.g. def/use 
chains: 

nodes are def(inition)s and uses 
edge from def to use 
a def can reach multiple uses 
a use can have multiple reaching defs



Analysis and Transformation
Each optimization is made up of 

some number of analyses 
followed by a transformation 

Analyze CFG and/or DFG by propagating info forward or 
backward along CFG and/or DFG edges 

edges called program points 
merges in graph require combining info 
loops in graph require iterative approximation 

Perform improving transformations based on info computed 
have to wait until any iterative approximation has converged 

Analysis must be conservative/safe/sound so that 
transformations preserve program behavior



Example: Constant Propagation, Folding

Can use either the CFG or the DFG 
CFG analysis info: table mapping each variable in scope to one of: 

a particular constant 
NonConstant
Undefined 

Transformation at each instruction: 
if reference a variable that the table maps to a constant,  then 
replace with that constant (constant propagation) 
if r.h.s. expression involves only constants, and has no side-
effects, then perform operation at compile-time and replace 
r.h.s. with constant result (constant folding) 

For best analysis, do constant folding as part of analysis, to learn 
all constants in one pass



Merging data flow analysis 
info

Constraint: merge results must be sound 
if something is believed true after the merge, then it 
must be true no matter which path we took into the  
merge 
only things true along all predecessors are true after 
the merge 

To merge two maps of constant information, build 
map by merging corresponding variable 
information 
To merge information about two variable

if one is Undefined, keep the other 
if both same constant, keep that constant 
otherwise, degenerate to NonConstant



Example Merges

int x

x := 5 x := 5

x ==?

int x

x := 5 x := 4

x ==?

int x

x := 5

x ==?



Example Merges

int x

x := 5

x ==?

int x

x := 5 x := f(…)

x ==?



How to analyze loops
i = 0; 
x = 10; 
y = 20; 
while (...) { 

// what’s true here? 
... 
i = i + 1; 
y = 30; 

} 
// what’s true here? 
... x ... i ... y ... 

Safe but imprecise: 
forget everything 
when we enter or 
exit a loop 
Precise but unsafe: 
keep everything 
when we enter or 
exit a loop 
Can we do better? 



Loop Terminology 

preheader

entry edge

head

back 
edge

tail

loop

exit edge



Optimistic Iterative Analysis
Assuming information at loop head is same as 
information at loop entry 
Then analyze loop body, computing information at 
back edge 
Merge information at loop back edge and loop 
entry 
Test if merged information is same as original 
assumption 

If so, then we’re done 
If not, then replace previous assumption with merged 
information,
and go back to analysis of loop body



Example
i = 0; 
x = 10; 
y = 20; 
while (...) { 

// what’s true here? 
... 
i = i + 1; 
y = 30; } 

// what’s true here? 
... x ... i ... y ...



Why does this work?
Why are the results always conservative? 
Because if the algorithm stops, then 

the loop head info is at least as conservative as both 
the  loop entry info and the loop back edge info 
the analysis within the loop body is conservative, given 
the  assumption that the loop head info is conservative 

Why does the algorithm terminate? 
It might not! 
But it does if: 

there are only a finite number of times we could merge  
values together without reaching the worst case info 
(e.g. NotConstant)



More interprocedural analyses
Needed to support interprocedural
optimizations
Alias analysis

Different references referring to the same memory 
locations
may-alias vs. must-alias, context- and flow-
sensitivity

Escape analysis (pointers that are live on exit 
from procedures), shape analysis (static 
analysis of the properties of dynamic data 
structures), …

CSE401 Wi09 31



Supporting representations 
include

Call graph
Program dependence graph
…

CSE401 Wi09 32



Summary
Enlarging scope of analysis yields better results 

today, most optimizing compilers work at the 
intraprocedural (a\k\a global) level

Changing though, e.g., gcc LTO (link-time optimization) 

Optimizations organized as collections of 
passes, each rewriting IL in place into better 
version 
Presence of optimizations makes other parts of 
compiler (e.g. intermediate and target code 
generation) easier to write


