
11/21/2010 © 2002-10 Hal Perkins & UW CSE M-1

CSE 401 – Compilers

Running MiniJava
Basic Code Generation and Bootstrapping

Hal Perkins
Autumn 2010



Agenda

Enough to get a working project
Assembler source file format
Interfacing with the bootstrap program & 
outside world
A basic code generation strategy

11/21/2010 © 2002-10 Hal Perkins & UW CSE M-2



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-3

What We Need

To run a MiniJava program:
Space needs to be allocated for a stack 
and a heap
ESP and EBP need to have sensible initial 
values
We need some way to allocate storage and 
communicate with the outside world



Bootstrapping from C
Idea: Start execution in a small main function 
written in C
C main calls the compiled MiniJava main 
method using standard C linkage

Compiled code is all in the assembly language file
MiniJava’s main executes from there
Compiled code can call back to other functions 
included in the same C file (malloc, print, …)

Add to this file if you like
Sometimes easier for generated code to call an external 
function than producing the whole thing in-line

11/21/2010 © 2002-10 Hal Perkins & UW CSE M-4



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-5

Bootstrap Program Sketch
#include <stdio.h>
extern void asm_main();  /* compiled code */
/* execute compiled program */

int main() { asm_main(); return 0; }
/* write x to standard output */

void put(int x) { printf(“…”, x); }
/* return a pointer to a block of memory with at least n 

bytes (or null if insufficient memory available) */
void* runtimealloc(int n) { return malloc(n); }

Actual code is file boot.c linked from codegen project page



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-6

Here is a skeleton for the .asm file to be produced by 
MiniJava compilers (gnu assembler format)

.text # code segment

.globl   asm_main # declare asm_main as entry point

asm_main:
# main program starts execution here
…

.data # data segment
# generated method tables & static data
…
# repeat .text/.data as needed

GNU Assembler File Format



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-7

The GNU assembler uses AT&T syntax for historical 
reasons.  Main differences:

Intel vs. GNU Syntax

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movl, addl, pushl
[operand size added to end]

Register names eax, ebx, ebp, esp, … %eax, %ebx, %ebp, %esp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-8

Main Program Label

Compiler needs special handling for the 
static main method label

Label declared extern in C bootstrap 
program must match .globl label in the 
compiler-generates assembly file
“asm_main” used in starter code

Can’t be “main”.  Why not?
Hint: Where is the “real” main function?



External Names (technicality)
In linux an external symbol is used as-is
In Windows and Intel OS X, the 
convention is that an external symbol 
xyzzy appears in the asm code as _xyzzy
(leading underscore – avoids name clashes 
with opcodes)
Adapt to whatever environment you’re 
using

But what you turn in needs to run on attu
(x86 32-bit linux)

11/21/2010 © 2002-10 Hal Perkins & UW CSE M-9



System.out.println(exp)

Evaluate exp, then call the external put 
function in boot.c (which calls printf)

<compile exp; result in eax>
pushl %eax       # push exp value
call put # call external put routine
addl $4,%esp # pop parameter

More sample code in demo.s file linked from assignment

11/21/2010 © 2002-10 Hal Perkins & UW CSE M-10



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-11

Compiler Code Generation
Suggestion: isolate the actual compiler output 
(print) operations in a handful of routines

Modularity & saves some typing
Possibilities

// write code string s to .asm output
void gen(String s) { … }

// write “op  src,dst” to .asm output
void genbin(String op, String src, String dst) { … }

// write label L to .asm output as “L:”
void genLabel(String L) { … }

A handful of these methods should do it



A Simple Code Generation 
Strategy

Goal: quick ‘n dirty correct code, improve 
later if time
Traverse AST primarily in execution order 
and emit code during the traversal

May need to control the traversal from inside 
the visitor methods, or have both bottom-up 
and top-down visitors

Treat the x86 as a 1-register stack 
machine for now

11/21/2010 © 2002-10 Hal Perkins & UW CSE M-12



x86 as a Stack Machine
Idea: Use x86 stack for expression evaluation with 
eax as the “top” of the stack
Invariant: Whenever an expression (or part of one) 
is evaluated at runtime, the result winds up in eax
If a value needs to be preserved while evaluating 
another expression, push eax, evaluate, then pop

Remember: always pop what you push
Will produce lots of redundant, but correct, code

Examples below follow code shape examples, but 
with approximate gnu syntax – fix up as needed

11/21/2010 © 2002-10 Hal Perkins & UW CSE M-13



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-14

Example: Generate Code for 
Constants and Identifiers

Integer constants, say 17
gen(movl $17,%eax)

leaves value in eax

Variables (whether int, boolean, or 
reference type)

gen(movl  var-offset(base-register),%eax)



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-15

Example: Generate Code for 
exp1 + exp1

Visit exp1
generates code to evaluate exp1 and put result in eax

gen(pushl %eax)
generate a push instruction to save exp1 value

Visit exp2
generates code for exp2; result in eax

gen(popl %edx)
pop left argument exp1 into edx; cleans up stack

gen(addl %edx,%eax)
perform the addition; result in eax



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-16

Example:  var = exp;  (1)

Assuming that var is a local variable
visit node for exp

Generates code that leaves the result of 
evaluating exp in eax

gen(movl  %eax,variable-offset(%ebp) )



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-17

Example:  var = exp;  (2)
If var is a more complex expression 
(object or array reference, for example)

visit var
evaluate lhs var expression; result in eax

gen(pushl %eax)
push reference to variable or object containing 
variable onto stack

visit exp
gen(popl %edx)
gen(movl %eax,appropriate_offset(%edx) )



Example: Generate Code for 
obj.f(e1,e2,…en)

Visit en
leaves argument in eax

gen(push eax)
… Repeat until all arguments pushed en-1, …, e2, e1
Visit obj

leaves reference to object in eax
Note: this isn’t quite right if evaluating obj has side effects – ignore 
for simplicity for our purposes

gen(movl %eax,%ecx)
copy “this” pointer to ecx

generate code to load method table pointer 
generate call instruction with indirect jump
gen(add  $numberOfBytesOfArguments,%esp)

Pop arguments

11/21/2010 © 2002-09 Hal Perkins & UW CSE M-18



11/21/2010 © 2002-09 Hal Perkins & UW CSE M-19

Example: Method Definitions

Generate label for method
Classname$methodname:

Generate method prologue
push ebp, copy esp to ebp, subtract from 
esp to allocate local stack frame

Visit statements in order
Method epilogue will be generated as part 
of each return statement (next)



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-20

Example: return exp;

Visit exp; leaves result in eax where it 
should be
Generate method epilogue to unwind 
the stack frame; end with ret 
instruction



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-21

Control Flow: Unique Labels

Needed: a String-valued method that 
returns a different label each time it is 
called (e.g., L1, L2, L3, …, L42, …)

Variation: a set of methods that generate 
different kinds of labels for different 
constructs (can really help readability of 
the generated code)

(while1, while2, while3, …; if1, if2, …; else1, 
else2, …; fi1, fi2, … .)



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-22

Control Flow: Tests

Recall the context for compiling a 
boolean expression:

Jump target
Whether to jump if true or false

So visitor for a boolean expression 
needs this information from parent 
node if it is to be exploited



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-23

Example: while(exp) body

Assuming we want the test at the 
bottom of the generated loop…

gen(jmp testLabel)     (use unique labels)

gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp (condition) with target=bodyLabel
and sense=“jump if true”



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-24

Example  exp1 < exp2
Similar to other binary operators
Difference: context is a target label and whether to 
jump if true or false; other binary ops have no 
context
Code:

visit exp1
gen(pushl %eax)
visit exp2
gen(popl %edx)
gen(cmp %edx,%eax)
gen(condjump targetLabel)

appropriate conditional jump depends on sense of test



11/21/2010 © 2002-10 Hal Perkins & UW CSE M-25

Boolean Operators

&& and ||
Create label needed to skip around second 
operand when appropriate
Generate subexpressions with appropriate 
target labels and conditions

!exp
Generate exp with same target label, but 
reverse the sense of the condition



11/21/2010 © 2002-09 Hal Perkins & UW CSE M-26

Join Points
Loops and conditional statements have join points 
where execution paths merge
Generated code must ensure that machine state will 
be consistent regardless of which path is taken to 
reach a join point

i.e., the paths through an if-else statement must not leave a 
different number of bytes pushed onto the stack
If we want a particular value in a particular register at a join 
point, both paths must put it there, or we need to generate 
additional code to get value in the right register

With a simple 1-accumulator model of code 
generation, this should generally be true without 
needing extra work; with better use of registers this 
becomes an issue



11/21/2010 © 2002-09 Hal Perkins & UW CSE M-27

And That’s It… 

We’ve now got enough on the table to 
complete the compiler project 
Coming Attractions – production 
compilers

Back end (instruction selection and 
scheduling, register allocation)
Middle (optimizations)
Suggestions?  What do you want to see?


