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Agenda

Static semantics
Types
Attribute grammars
Representing types
Symbol tables
Disclaimer: There’s more here than the 
subset you need for the project
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What do we need to know to 
compile & check this?
class C {

int a;
C(int initial) {

a = initial;
}
void setA(int val) {

a = val;
}

}

class Main {
public static void main(){

C c = new C(17);
c.setA(42);

}
}
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Beyond Syntax
There is a level of correctness that is not captured by 
a context-free grammar

Has a variable been declared?
Are types consistent in an expression?
In the assignment x=y, is y assignable to x?
Does a method call have the right number and types of 
parameters?
In a selector p.q, is q a method or field of class instance p?
Is variable x guaranteed to be initialized before it is used?
Could p be null when p.q is executed?
Etc. etc. etc.
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What else do we need to 
know to generate code?

Where are fields allocated in an object?
How big are objects? (i.e., how much storage needs 
to be allocated by new)
Where are local variables stored when a method is 
called?
Which methods are associated with an object/class?

In particular, how do we figure out which method to call 
based on the run-time type of an object?



Semantic Analysis
Main tasks:

Extract types and other information from the program
Check language rules that go beyond the context-free 
grammar
Resolve names

Relate declarations and uses of each variable
“Understand” the program well enough for synthesis

Key data structure: Symbol tables
Map each identifier in the program to information 
about it (kind, type, etc.)

Final part of the analysis phase / front end of the 
compiler
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Some Kinds of Semantic 
Information

Information Generated From Used to process

Symbol tables Declarations Expressions, 
statements

Type information Declarations, 
expressions

Operations

Constant/variable 
information

Declarations, 
expressions

Statements, 
expressions

Register & memory 
locations

Assigned by compiler Code generation

Values Constants Expressions



Semantic Checks

For each language construct we want to 
know:

What semantic rules should be checked
Specified by language definition (type compatibility, 
required initialization, etc.)

For an expression, what is its type (used to 
check whether the expression is legal in the 
current context)
For declarations, what information needs to be 
captured to use elsewhere
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A Sampling of Semantic 
Checks (0)

Appearance of a name: id
id has been declared and is in scope
Inferred type of id is its declared type
Memory location assigned by compiler

Constant: v
Inferred type and value are explicit
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A Sampling of Semantic 
Checks (1)

Binary operator: exp1 op exp2

exp1 and exp2 have compatible types
Either identical, or
Well-defined conversion to appropriate types

Inferred type is a function of the operator 
and operands 
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A Sampling of Semantic 
Checks (2)

Assignment: exp1 = exp2
exp1 is assignable (not a constant or expression)
exp1 and exp2 have (assignment-)compatible 
types

Identical, or
exp2 can be converted to exp1 (e.g., char to int), or
Type of exp2 is a subclass of type of exp1 (can be 
decided at compile time)

Inferred type is type of exp1

Location where value is stored is assigned by the 
compiler



A Sampling of Semantic 
Checks (3)

Cast: (exp1) exp2 
exp1 is a type 
exp2 either

Has same type as exp1
Can be converted to type exp1 (e.g., double to int)
Is a superclass of exp1 (in general this requires a 
runtime check to verify; at compile time we can at 
least decide if it could be true)

Inferred type is exp1
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A Sampling of Semantic 
Checks (4)

Field reference:  exp.f 
exp is a reference type (class instance)
The class of exp has a field named f 
Inferred type is declared type of f
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A Sampling of Semantic 
Checks (5)

Method call: exp.m(e1, e2, …, en)
exp is a reference type (class instance)
The class of exp has a method named m
The method has n parameters
Each argument has a type that can be 
assigned to the associated parameter
Inferred type is given by method 
declaration (or is void)



10/31/2010 © 2002-10 Hal Perkins & UW CSE I-15

A Sampling of Semantic 
Checks (6)

Return statement: 
return exp; 
return;

Either
The expression can be assigned to a variable 
with the declared type of the method (if the 
method is not void) – exactly the same test as 
for assignment statement

or
There’s no expression (if the method is void)
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Attribute Grammars

A systematic way to think about 
semantic analysis
Sometimes used directly, but even 
when not, AGs are a useful way to 
organize the analysis and thinking 
about it



Attribute Grammars
Idea: associate attributes with each node 
in the (abstract) syntax tree
Examples of attributes

Type information
Storage location
Assignable (e.g., expression vs variable –
lvalue vs rvalue for C/C++ programmers)
Value (for constant expressions)
etc. …

Notation: X.a if a is an attribute of node X
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Attribute Example

Assume that each node has a .val attribute 
AST and attribution for (1+2) * (6 / 2)
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Inherited and Synthesized 
Attributes

Given a production X ::= Y1 Y2 … Yn

A synthesized attribute X.a is a function of 
some combination of attributes of Yi’s 
(bottom up)
An inherited attribute Yi.b is a function of 
some combination of attributes X.a and 
other Yj.c (top down)

Sometimes restricted a bit: only Y’s to the left 
can be used (has implications for evaluation)
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Informal Example of Attribute 
Rules (1)

Suppose we have the following 
grammar for a trivial language

program ::= decl stmt
decl ::= int id;
stmt ::= exp = exp ;
exp ::= id | exp + exp | 1

We want to give suitable attributes for 
basic type and lvalue/rvalue checking
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Informal Example of Attribute 
Rules (2)

Attributes of nodes
env (environment, e.g., symbol table); 
synthesized by decl, inherited by stmt

Each entry maps a name to its type and kind

type (expression type); synthesized
kind (variable [var or lvalue] vs value [val
or rvalue]); synthesized
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Attributes for Declarations

decl ::= int id;
decl.env = {id, int, var}
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Attributes for Program

program ::= decl stmt
stmt.env = decl.env
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Attributes for Constants

exp ::= 1
exp.kind = val
exp.type = int
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Attributes for Identifier Exprs.

exp ::= id
id.type = exp.env.lookup(id)
exp.type = id.type
exp.kind = id.kind
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Attributes for Addition

exp ::= exp1 + exp2

exp1.env = exp.env
exp2.env = exp.env
error if exp1.type != exp2.type

(or error if not combatable if rules are move 
complex)

exp.type = exp1.type
exp.kind = val
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Attribute Rules for Assignment

stmt ::= exp1 = exp2;
exp1.env = stmt.env
exp2.env = stmt.env
Error if exp2.type is not assignment 
compatibile with exp1.type
Error if exp1.kind is val (must be var)
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Example

int x; x = x + 1;
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Extensions

This can be extended to handle 
sequences of declarations and 
statements

Sequence of declarations builds up 
combined environment with information 
about all declarations
Full environment is passed down to 
statements and expressions
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Observations

These are equational (functional) 
computations 
This can be automated, provided the attribute 
equations are non-circular
But implementation problems

Non-local computation
Can’t afford to literally pass around copies of 
large, aggregate structures like environments



In Practice
Attribute grammars give us a good way of 
thinking about how to structure semantic 
checks
Symbol tables will hold environment 
information
Add fields to AST nodes to refer to appropriate 
attributes (symbol table entries for identifiers, 
types for expressions, etc.)

Put in appropriate places in AST class inheritance 
tree – most statements don’t need types, for 
example
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Symbol Tables

Map identifiers to 
<type, kind, location, other properties>
Operations

Lookup(id) => information
Enter(id, information)
Open/close scopes

Build & use during semantics pass
Build first from declarations
Then use to check semantic rules
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Aside: 
Implementing Symbol Tables

Big topic in classical compiler courses: 
implementing a hashed symbol table
These days: use the collection classes that 
are provided with the standard language 
libraries (Java, C#, C++, ML, Haskell, etc.)

Then tune & optimize if it really matters

For Java:
Map (HashMap) will handle most cases
List (ArrayList) for ordered lists (parameters, etc.)
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Symbol Tables for MiniJava (1)

Global – Per Program Information
Single global table to map class names to 
per-class symbol tables

Created in a pass over class definitions in AST
Used in remaining parts of compiler to check 
class types and their field/method names and 
extract information about them



Symbol Tables for MiniJava (2)

Global – Per Class Information
1 Symbol table for each class

1 entry per method/field declared in the class
Contents: type information, public/private, parameter 
types (for methods), storage locations (later), etc.

In full Java, need multiple symbol tables (or 
more complex symbol table) per class

Ex.: Java allows the same identifier to name both a 
method and a field in a class – multiple namespaces
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Symbol Tables for MiniJava (3)

Global (cont)
All global tables persist throughout the 
compilation

And beyond in a real Java or C# compiler…
(e.g., symbolic information in Java .class or MSIL 
files)
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Symbol Tables for MiniJava (4)

Local symbol table for each method
1 entry for each local variable or parameter

Contents: type information, storage locations 
(later), etc.

Needed only while compiling the method; 
can discard when done

But if type checking and code gen, etc. are 
done in separate passes, this table needs to 
persist until we’re done with it
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Beyond MiniJava

What we aren’t dealing with: nested scopes
Inner classes
Nested scopes in methods – reuse of identifiers in 
parallel or inner scopes; nested functions (ML, …)

Basic idea: new symbol table for inner 
scopes, linked to surrounding scope’s table

Look for identifier in inner scope; if not found look 
in surrounding scope (recursively)
Pop back up on scope exit 
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Engineering Issues

In practice, want to retain O(1) lookup
Use hash tables with additional information 
to get the scope nesting right

Scope entry/exit operations

In multipass compilers, symbol table 
info needs to persist after analysis of 
inner scopes for use on later passes

See a compiler textbook for ideas & details
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Error Recovery

What to do when an undeclared identifier is 
encountered?

Only complain once (Why?)
Can forge a symbol table entry for it once you’ve 
complained so it will be found in the future
Assign the forged entry a type of “unknown”
“Unknown” is the type of all malformed 
expressions and is compatible with all other types

Allows you to only complain once!  (How?)
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“Predefined” Things
Many languages have some “predefined” items 
(functions, classes, standard library or prelude, 
…)
Include init code in the compiler to manually 
create symbol table entries for these when the 
compiler starts up

Rest of compiler generally doesn’t need to know 
the difference between “predeclared” items and 
ones found in the program
Can get from a configuration file or initialized table
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Types

Classical roles of types in programming 
languages

Run-time safety
Compile-time error detection
Improved expressiveness (method or 
operator overloading, for example)
Provide information to optimizer



Type Checking Terminology
Static vs. dynamic typing 

• static: checking done prior to execution (e.g. compile-time) 
• dynamic: checking during execution 

Strong vs. weak typing 
• strong: guarantees no illegal operations performed 
• weak: can’t make guarantees

Caveats:
Hybrids common
Inconsistent usage 
common
“untyped,” “typeless” 
could mean dynamic 
or weak

static dynamic

strong Java Lisp

weak C PERL (1-5)
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Type Systems

Base Types
Fundamental, atomic types
Typical examples: int, double, char, bool

Compound/Constructed Types
Built up from other types (recursively)
Constructors include arrays, records/ 
structs/classes, pointers, enumerations, 
functions, modules, …



Type Representation
Create a shallow class hierarchy, for example:

abstract class Type { … }   // or interface
class ClassType extends Type { … }
class BaseType extends Type { … }

Should not need too many of these
Not the same as the AST representation for 
source program type or variable declarations

Difference is we want to capture the semantics of 
the type system for inference, checking, etc.
An instance of this graph represents each compile-
time type found in the program
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Base Types
For each base type (int, boolean, others in other 
languages), create a single object to represent it

Base types in symbol table entries and AST nodes are 
direct references to these objects
Base type objects usually create at compiler startup

Useful to create a “void” type object to tag 
functions that do not return a value
Also useful to create an “unknown” type object for 
errors

(“void” and “unknown” types reduce the need for 
special case code in various places in the type checker)
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Compound Types

Basic idea: use a appropriate “type 
constructor” object that refers to the 
component types

Limited number of these – correspond 
directly to type constructors in the 
language (record/struct/class, array, 
function,…)
A compound type is a graph
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Class Types
class Id { fields and methods }
class ClassType extends Type {

Type baseClassType;    // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods

}

(Note: may not want to do this literally, depending on how 
class symbol tables are represented; i.e., class symbol tables 
might be useful or sufficient as the representation of the 
class type.)
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Array Types

For regular Java this is simple: only 
possibility is # of dimensions and 
element type

class ArrayType extends Type {
int nDims;
Type elementType;

}
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Array Types for Pascal &c

Pascal allows arrays to be indexed by 
any discrete type like an enum, char, 
subrange of int, or other discrete type

array [indexType] of elementType

Element type can be any other type, 
including an array

class GeneralArrayType extends Type {
Type indexType;
Type elementType;

}



10/31/2010 © 2002-10 Hal Perkins & UW CSE I-51

Methods/Functions

Type of a method is its result type plus an 
ordered list of parameter types

class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}
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Type Equivalance

For base types this is simple
Types are the same if they are identical
Normally there are well defined rules for 
coercions between arithmetic types

Compiler inserts these automatically or when 
requested by programmer (casts) – often 
involves inserting cast/conversion nodes in AST



10/31/2010 © 2002-10 Hal Perkins & UW CSE I-53

Type Equivalence for 
Compound Types

Two basic strategies
Structural equivalence: two types are the 
same if they are the same kind of type and 
their component types are equivalent, 
recursively
Name equivalence: two types are the same 
only if they have the same name, even if 
their structures match

Different language design philosophies



Structural Equivalence
Structural equivalence says two types are equal 
iff they have same structure 

atomic types are tautologically the same structure
if type constructors:

same constructor 
recursively, equivalent arguments to constructor 

Ex: atomic types, array types, ML record types
Implement with recursive implementation of 
equals, or by canonicalization of types when 
types created then use pointer equality 

CSE401 Wi09 54



Name Equivalence

Name equivalence says that two types are 
equal iff they came from the same textual 
occurrence of a type constructor 

Ex: class types, C struct types (struct tag 
name), datatypes in ML
special case: type synonyms (e.g. typedef in 
C) do not define new types 

Implement with pointer equality assuming 
appropriate representation of type info
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Type Equivalence and 
Inheritance 

Suppose we have
class Base { … }
class Extended extends Base { … }

A variable declared with type Base has a 
compile-time type of Base
During execution, that variable may refer to 
an object of class Base or any of its 
subclasses like Extended (or can be null, 
which is compatible with all class types)

Sometimes called the runtime type



Type Casts

In most languages, one can explicitly 
cast an object of one type to another 

sometimes cast means a conversion (e.g., 
casts between numeric types) 
sometimes cast means a change of static 
type without doing any computation (casts 
between pointer types or pointer and 
numeric types) 
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Type Conversions and 
Coercions

In Java, can explicitly convert an value 
of type double to one of type int 

can represent as unary operator 
typecheck, codegen normally 

In Java, can implicitly coerce an value 
of type int to one of type double 

compiler must insert unary conversion 
operators, based on result of type checking
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C and Java: type casts
In C: safety/correctness of casts not checked 

allows writing low-level code that’s type-unsafe 
more often used to work around limitations in C’s 
static type system 

In Java: downcasts from superclass to subclass 
include run-time type check to preserve type 
safety 

static typechecker allows the cast 
codegen introduces run-time check 
Java’s main form of dynamic type checking
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Various Notions of Equivalance

So there are usually several relations on 
types that we need to deal with:

“is the same as”
“is assignable to”
“is same or a subclass of”
“is convertible to”

Be sure to check for the right one(s)
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Useful Compiler Functions
Create a handful of methods to decide different 
kinds of type compatibility:

Types are identical
Type t1 is assignment compatible with t2
Parameter list is compatible with types of expressions 
in the call

Usual modularity reasons: isolates these 
decisions in one place and hides the actual type 
representation from the rest of the compiler
Probably belongs in the same package with the 
type representation classes



10/31/2010 © 2002-10 Hal Perkins & UW CSE I-62

Implementing Type Checking 
for MiniJava

Create multiple visitors for the AST
First pass/passes: gather information

Collect global type information for classes
Could do this in one pass, or might want to do one 
pass to collect class information, then a second 
one to collect per-class information about fields, 
methods – you decide

Next set of passes: go through method 
bodies to check types, other semantic 
constraints



Disclaimer

This discussion of semantics, type 
representation, etc. should give you a 
good idea of what needs to be done in 
you’ll project, but you’ll need to adapt 
the ideas to the project specifics.
You’ll also find good ideas in your 
compiler book…
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Coming Attractions
Need to start thinking about translating to 
object code (actually x86 assembly language, 
the default for this project)
Next lectures 

x86 overview (as a target for simple compilers)
Runtime representation of classes, objects, data, 
and method stack frames
Assembly language code for higher-level language 
statements

And there’s a midterm in there somewhere…
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