
10/31/2010 © 2002-10 Hal Perkins & UW CSE I-1

CSE 401 – Compilers

Static Semantics
Hal Perkins

Autumn 2010

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-2

Agenda

Static semantics
Types
Attribute grammars
Representing types
Symbol tables
Disclaimer: There’s more here than the
subset you need for the project

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-3

What do we need to know to
compile & check this?
class C {

int a;
C(int initial) {

a = initial;
}
void setA(int val) {

a = val;
}

}

class Main {
public static void main(){

C c = new C(17);
c.setA(42);

}
}

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-4

Beyond Syntax
There is a level of correctness that is not captured by
a context-free grammar

Has a variable been declared?
Are types consistent in an expression?
In the assignment x=y, is y assignable to x?
Does a method call have the right number and types of
parameters?
In a selector p.q, is q a method or field of class instance p?
Is variable x guaranteed to be initialized before it is used?
Could p be null when p.q is executed?
Etc. etc. etc.

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-5

What else do we need to
know to generate code?

Where are fields allocated in an object?
How big are objects? (i.e., how much storage needs
to be allocated by new)
Where are local variables stored when a method is
called?
Which methods are associated with an object/class?

In particular, how do we figure out which method to call
based on the run-time type of an object?

Semantic Analysis
Main tasks:

Extract types and other information from the program
Check language rules that go beyond the context-free
grammar
Resolve names

Relate declarations and uses of each variable
“Understand” the program well enough for synthesis

Key data structure: Symbol tables
Map each identifier in the program to information
about it (kind, type, etc.)

Final part of the analysis phase / front end of the
compiler

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-6

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-7

Some Kinds of Semantic
Information

Information Generated From Used to process

Symbol tables Declarations Expressions,
statements

Type information Declarations,
expressions

Operations

Constant/variable
information

Declarations,
expressions

Statements,
expressions

Register & memory
locations

Assigned by compiler Code generation

Values Constants Expressions

Semantic Checks

For each language construct we want to
know:

What semantic rules should be checked
Specified by language definition (type compatibility,
required initialization, etc.)

For an expression, what is its type (used to
check whether the expression is legal in the
current context)
For declarations, what information needs to be
captured to use elsewhere

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-8

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-9

A Sampling of Semantic
Checks (0)

Appearance of a name: id
id has been declared and is in scope
Inferred type of id is its declared type
Memory location assigned by compiler

Constant: v
Inferred type and value are explicit

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-10

A Sampling of Semantic
Checks (1)

Binary operator: exp1 op exp2

exp1 and exp2 have compatible types
Either identical, or
Well-defined conversion to appropriate types

Inferred type is a function of the operator
and operands

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-11

A Sampling of Semantic
Checks (2)

Assignment: exp1 = exp2
exp1 is assignable (not a constant or expression)
exp1 and exp2 have (assignment-)compatible
types

Identical, or
exp2 can be converted to exp1 (e.g., char to int), or
Type of exp2 is a subclass of type of exp1 (can be
decided at compile time)

Inferred type is type of exp1

Location where value is stored is assigned by the
compiler

A Sampling of Semantic
Checks (3)

Cast: (exp1) exp2
exp1 is a type
exp2 either

Has same type as exp1
Can be converted to type exp1 (e.g., double to int)
Is a superclass of exp1 (in general this requires a
runtime check to verify; at compile time we can at
least decide if it could be true)

Inferred type is exp1

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-12

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-13

A Sampling of Semantic
Checks (4)

Field reference: exp.f
exp is a reference type (class instance)
The class of exp has a field named f
Inferred type is declared type of f

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-14

A Sampling of Semantic
Checks (5)

Method call: exp.m(e1, e2, …, en)
exp is a reference type (class instance)
The class of exp has a method named m
The method has n parameters
Each argument has a type that can be
assigned to the associated parameter
Inferred type is given by method
declaration (or is void)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-15

A Sampling of Semantic
Checks (6)

Return statement:
return exp;
return;

Either
The expression can be assigned to a variable
with the declared type of the method (if the
method is not void) – exactly the same test as
for assignment statement

or
There’s no expression (if the method is void)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-16

Attribute Grammars

A systematic way to think about
semantic analysis
Sometimes used directly, but even
when not, AGs are a useful way to
organize the analysis and thinking
about it

Attribute Grammars
Idea: associate attributes with each node
in the (abstract) syntax tree
Examples of attributes

Type information
Storage location
Assignable (e.g., expression vs variable –
lvalue vs rvalue for C/C++ programmers)
Value (for constant expressions)
etc. …

Notation: X.a if a is an attribute of node X

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-17

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-18

Attribute Example

Assume that each node has a .val attribute
AST and attribution for (1+2) * (6 / 2)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-19

Inherited and Synthesized
Attributes

Given a production X ::= Y1 Y2 … Yn

A synthesized attribute X.a is a function of
some combination of attributes of Yi’s
(bottom up)
An inherited attribute Yi.b is a function of
some combination of attributes X.a and
other Yj.c (top down)

Sometimes restricted a bit: only Y’s to the left
can be used (has implications for evaluation)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-20

Informal Example of Attribute
Rules (1)

Suppose we have the following
grammar for a trivial language

program ::= decl stmt
decl ::= int id;
stmt ::= exp = exp ;
exp ::= id | exp + exp | 1

We want to give suitable attributes for
basic type and lvalue/rvalue checking

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-21

Informal Example of Attribute
Rules (2)

Attributes of nodes
env (environment, e.g., symbol table);
synthesized by decl, inherited by stmt

Each entry maps a name to its type and kind

type (expression type); synthesized
kind (variable [var or lvalue] vs value [val
or rvalue]); synthesized

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-22

Attributes for Declarations

decl ::= int id;
decl.env = {id, int, var}

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-23

Attributes for Program

program ::= decl stmt
stmt.env = decl.env

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-24

Attributes for Constants

exp ::= 1
exp.kind = val
exp.type = int

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-25

Attributes for Identifier Exprs.

exp ::= id
id.type = exp.env.lookup(id)
exp.type = id.type
exp.kind = id.kind

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-26

Attributes for Addition

exp ::= exp1 + exp2

exp1.env = exp.env
exp2.env = exp.env
error if exp1.type != exp2.type

(or error if not combatable if rules are move
complex)

exp.type = exp1.type
exp.kind = val

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-27

Attribute Rules for Assignment

stmt ::= exp1 = exp2;
exp1.env = stmt.env
exp2.env = stmt.env
Error if exp2.type is not assignment
compatibile with exp1.type
Error if exp1.kind is val (must be var)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-28

Example

int x; x = x + 1;

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-29

Extensions

This can be extended to handle
sequences of declarations and
statements

Sequence of declarations builds up
combined environment with information
about all declarations
Full environment is passed down to
statements and expressions

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-30

Observations

These are equational (functional)
computations
This can be automated, provided the attribute
equations are non-circular
But implementation problems

Non-local computation
Can’t afford to literally pass around copies of
large, aggregate structures like environments

In Practice
Attribute grammars give us a good way of
thinking about how to structure semantic
checks
Symbol tables will hold environment
information
Add fields to AST nodes to refer to appropriate
attributes (symbol table entries for identifiers,
types for expressions, etc.)

Put in appropriate places in AST class inheritance
tree – most statements don’t need types, for
example

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-31

Symbol Tables

Map identifiers to
<type, kind, location, other properties>
Operations

Lookup(id) => information
Enter(id, information)
Open/close scopes

Build & use during semantics pass
Build first from declarations
Then use to check semantic rules

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-32

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-33

Aside:
Implementing Symbol Tables

Big topic in classical compiler courses:
implementing a hashed symbol table
These days: use the collection classes that
are provided with the standard language
libraries (Java, C#, C++, ML, Haskell, etc.)

Then tune & optimize if it really matters

For Java:
Map (HashMap) will handle most cases
List (ArrayList) for ordered lists (parameters, etc.)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-34

Symbol Tables for MiniJava (1)

Global – Per Program Information
Single global table to map class names to
per-class symbol tables

Created in a pass over class definitions in AST
Used in remaining parts of compiler to check
class types and their field/method names and
extract information about them

Symbol Tables for MiniJava (2)

Global – Per Class Information
1 Symbol table for each class

1 entry per method/field declared in the class
Contents: type information, public/private, parameter
types (for methods), storage locations (later), etc.

In full Java, need multiple symbol tables (or
more complex symbol table) per class

Ex.: Java allows the same identifier to name both a
method and a field in a class – multiple namespaces

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-35

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-36

Symbol Tables for MiniJava (3)

Global (cont)
All global tables persist throughout the
compilation

And beyond in a real Java or C# compiler…
(e.g., symbolic information in Java .class or MSIL
files)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-37

Symbol Tables for MiniJava (4)

Local symbol table for each method
1 entry for each local variable or parameter

Contents: type information, storage locations
(later), etc.

Needed only while compiling the method;
can discard when done

But if type checking and code gen, etc. are
done in separate passes, this table needs to
persist until we’re done with it

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-38

Beyond MiniJava

What we aren’t dealing with: nested scopes
Inner classes
Nested scopes in methods – reuse of identifiers in
parallel or inner scopes; nested functions (ML, …)

Basic idea: new symbol table for inner
scopes, linked to surrounding scope’s table

Look for identifier in inner scope; if not found look
in surrounding scope (recursively)
Pop back up on scope exit

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-39

Engineering Issues

In practice, want to retain O(1) lookup
Use hash tables with additional information
to get the scope nesting right

Scope entry/exit operations

In multipass compilers, symbol table
info needs to persist after analysis of
inner scopes for use on later passes

See a compiler textbook for ideas & details

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-40

Error Recovery

What to do when an undeclared identifier is
encountered?

Only complain once (Why?)
Can forge a symbol table entry for it once you’ve
complained so it will be found in the future
Assign the forged entry a type of “unknown”
“Unknown” is the type of all malformed
expressions and is compatible with all other types

Allows you to only complain once! (How?)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-41

“Predefined” Things
Many languages have some “predefined” items
(functions, classes, standard library or prelude,
…)
Include init code in the compiler to manually
create symbol table entries for these when the
compiler starts up

Rest of compiler generally doesn’t need to know
the difference between “predeclared” items and
ones found in the program
Can get from a configuration file or initialized table

10/31/2010 © 2002-08 Hal Perkins & UW CSE I-42

Types

Classical roles of types in programming
languages

Run-time safety
Compile-time error detection
Improved expressiveness (method or
operator overloading, for example)
Provide information to optimizer

Type Checking Terminology
Static vs. dynamic typing

• static: checking done prior to execution (e.g. compile-time)
• dynamic: checking during execution

Strong vs. weak typing
• strong: guarantees no illegal operations performed
• weak: can’t make guarantees

Caveats:
Hybrids common
Inconsistent usage
common
“untyped,” “typeless”
could mean dynamic
or weak

static dynamic

strong Java Lisp

weak C PERL (1-5)

CSE401 Wi09 43

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-44

Type Systems

Base Types
Fundamental, atomic types
Typical examples: int, double, char, bool

Compound/Constructed Types
Built up from other types (recursively)
Constructors include arrays, records/
structs/classes, pointers, enumerations,
functions, modules, …

Type Representation
Create a shallow class hierarchy, for example:

abstract class Type { … } // or interface
class ClassType extends Type { … }
class BaseType extends Type { … }

Should not need too many of these
Not the same as the AST representation for
source program type or variable declarations

Difference is we want to capture the semantics of
the type system for inference, checking, etc.
An instance of this graph represents each compile-
time type found in the program

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-45

Base Types
For each base type (int, boolean, others in other
languages), create a single object to represent it

Base types in symbol table entries and AST nodes are
direct references to these objects
Base type objects usually create at compiler startup

Useful to create a “void” type object to tag
functions that do not return a value
Also useful to create an “unknown” type object for
errors

(“void” and “unknown” types reduce the need for
special case code in various places in the type checker)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-46

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-47

Compound Types

Basic idea: use a appropriate “type
constructor” object that refers to the
component types

Limited number of these – correspond
directly to type constructors in the
language (record/struct/class, array,
function,…)
A compound type is a graph

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-48

Class Types
class Id { fields and methods }
class ClassType extends Type {

Type baseClassType; // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods

}

(Note: may not want to do this literally, depending on how
class symbol tables are represented; i.e., class symbol tables
might be useful or sufficient as the representation of the
class type.)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-49

Array Types

For regular Java this is simple: only
possibility is # of dimensions and
element type

class ArrayType extends Type {
int nDims;
Type elementType;

}

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-50

Array Types for Pascal &c

Pascal allows arrays to be indexed by
any discrete type like an enum, char,
subrange of int, or other discrete type

array [indexType] of elementType

Element type can be any other type,
including an array

class GeneralArrayType extends Type {
Type indexType;
Type elementType;

}

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-51

Methods/Functions

Type of a method is its result type plus an
ordered list of parameter types

class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-52

Type Equivalance

For base types this is simple
Types are the same if they are identical
Normally there are well defined rules for
coercions between arithmetic types

Compiler inserts these automatically or when
requested by programmer (casts) – often
involves inserting cast/conversion nodes in AST

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-53

Type Equivalence for
Compound Types

Two basic strategies
Structural equivalence: two types are the
same if they are the same kind of type and
their component types are equivalent,
recursively
Name equivalence: two types are the same
only if they have the same name, even if
their structures match

Different language design philosophies

Structural Equivalence
Structural equivalence says two types are equal
iff they have same structure

atomic types are tautologically the same structure
if type constructors:

same constructor
recursively, equivalent arguments to constructor

Ex: atomic types, array types, ML record types
Implement with recursive implementation of
equals, or by canonicalization of types when
types created then use pointer equality

CSE401 Wi09 54

Name Equivalence

Name equivalence says that two types are
equal iff they came from the same textual
occurrence of a type constructor

Ex: class types, C struct types (struct tag
name), datatypes in ML
special case: type synonyms (e.g. typedef in
C) do not define new types

Implement with pointer equality assuming
appropriate representation of type info

CSE401 Wi09 55

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-56

Type Equivalence and
Inheritance

Suppose we have
class Base { … }
class Extended extends Base { … }

A variable declared with type Base has a
compile-time type of Base
During execution, that variable may refer to
an object of class Base or any of its
subclasses like Extended (or can be null,
which is compatible with all class types)

Sometimes called the runtime type

Type Casts

In most languages, one can explicitly
cast an object of one type to another

sometimes cast means a conversion (e.g.,
casts between numeric types)
sometimes cast means a change of static
type without doing any computation (casts
between pointer types or pointer and
numeric types)

CSE401 Wi09 57

Type Conversions and
Coercions

In Java, can explicitly convert an value
of type double to one of type int

can represent as unary operator
typecheck, codegen normally

In Java, can implicitly coerce an value
of type int to one of type double

compiler must insert unary conversion
operators, based on result of type checking

CSE401 Wi09 58

C and Java: type casts
In C: safety/correctness of casts not checked

allows writing low-level code that’s type-unsafe
more often used to work around limitations in C’s
static type system

In Java: downcasts from superclass to subclass
include run-time type check to preserve type
safety

static typechecker allows the cast
codegen introduces run-time check
Java’s main form of dynamic type checking

CSE401 Wi09 59

Various Notions of Equivalance

So there are usually several relations on
types that we need to deal with:

“is the same as”
“is assignable to”
“is same or a subclass of”
“is convertible to”

Be sure to check for the right one(s)

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-60

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-61

Useful Compiler Functions
Create a handful of methods to decide different
kinds of type compatibility:

Types are identical
Type t1 is assignment compatible with t2
Parameter list is compatible with types of expressions
in the call

Usual modularity reasons: isolates these
decisions in one place and hides the actual type
representation from the rest of the compiler
Probably belongs in the same package with the
type representation classes

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-62

Implementing Type Checking
for MiniJava

Create multiple visitors for the AST
First pass/passes: gather information

Collect global type information for classes
Could do this in one pass, or might want to do one
pass to collect class information, then a second
one to collect per-class information about fields,
methods – you decide

Next set of passes: go through method
bodies to check types, other semantic
constraints

Disclaimer

This discussion of semantics, type
representation, etc. should give you a
good idea of what needs to be done in
you’ll project, but you’ll need to adapt
the ideas to the project specifics.
You’ll also find good ideas in your
compiler book…

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-63

Coming Attractions
Need to start thinking about translating to
object code (actually x86 assembly language,
the default for this project)
Next lectures

x86 overview (as a target for simple compilers)
Runtime representation of classes, objects, data,
and method stack frames
Assembly language code for higher-level language
statements

And there’s a midterm in there somewhere…

10/31/2010 © 2002-10 Hal Perkins & UW CSE I-64

