
10/21/2010 © 2002-10 Hal Perkins & UW CSE G-1

CSE 401 – Compilers

Intermediate Representations
Hal Perkins

Autumn 2010

Agenda

Parser Semantic Actions
Intermediate Representations

Abstract Syntax Trees (ASTs)
Linear Representations
& more

We’re going to skip past LL parsing for the
moment to keep the project on track.

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-2

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-3

Compiler Structure (review)

Source Target

Scanner

Parser Middle
(optimization)

Code Gen

characters

tokens

IR

IR (maybe different)

Assembly or binary code

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-4

What’s a Parser to Do?

Idea: at significant points in the parse
perform a semantic action

Typically when a production is reduced (LR) or at
a convenient point in the parse (LL)

Typical semantic actions
Build (and return) a representation of the parsed
chunk of the input (compiler)
Perform some sort of computation and return
result (interpreter)

Intermediate Representations
In most compilers, the parser builds an
intermediate representation of the
program
Rest of the compiler transforms the IR to
“improve” (optimize) it and eventually
translates it to final code

Often will transform initial IR to one or more
different IRs along the way

Some general examples now; specific
examples as we cover later topics

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-5

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-6

IR Design
Decisions affect speed and efficiency of the rest of
the compiler
Desirable properties

Easy to generate
Easy to manipulate
Expressive
Appropriate level of abstraction

Different tradeoffs depending on compiler goals
Different tradeoffs in different parts of the same
compiler

IR Design Taxonomy

Structure
Graphical (trees, DAGs, etc.)
Linear (code for some abstract machine)
Hybrids are common (e.g., control-flow
graphs)

Abstraction Level
High-level, near to source language
Low-level, closer to machine

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-7

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-8

Levels of Abstraction

Key design decision: how much detail to
expose

Affects possibility and profitability of
various optimizations
Structural IRs are typically fairly high-level
Linear IRs are typically low-level
But these generalizations don’t necessarily
hold

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-9

Examples: Array Reference

A[i,j]

or

t1 ← A[i,j]

loadI 1 => r1
sub rj,r1 => r2
loadI 10 => r3
mult r2,r3 => r4
sub ri,r1 => r5
add r4,r5 => r6
loadI @A => r7
add r7,r6 => r8
load r8 => r9

subscript

A i j

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-10

Structural IRs

Typically reflect source (or other higher-
level) language structure
Tend to be large
Examples: syntax trees, DAGs
Generally used in early phases of
compilers

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-11

Concrete Syntax Trees

The full grammar is needed to guide the
parser, but contains many extraneous details

Chain productions
Rules that control precedence and associativity

Typically the full syntax tree does not need to
be used explicitly

Abstract Syntax Trees
Want only essential structural information

Omit extraneous junk
Can be represented explicitly as a tree or
in a linear form

Example: LISP/Scheme S-expressions are
essentially ASTs

Common output from parser; used for
static semantics (type checking, etc.) and
high-level optimizations

Usually lowered for later compiler phases

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-12

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-13

ASTs in Java
Basic idea is simple: use small classes as
records (or structs) for nodes in the AST

Simple data structures, not too smart
But also use a bit of inheritance so we can
treat related nodes polymorphically

E.g., abstract AST class; extend to get generic
classes for statements and expressions;
extend those to get node types for specific
kinds of statements and expressions

Project details and survey of MiniJava AST
classes in sections

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-14

Position Information in Nodes

To produce useful error messages, it’s helpful
to record the source program location
corresponding to a node in that node

Most scanner/parser generators have a hook for
this, usually storing source position information in
tokens
Included in the MiniJava starter code we
distributed – take advantage of it in your code

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-15

AST Generation

Idea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links to the
subtrees that are the components of
the production in its instance variables)
When we finish parsing, the result of
the goal symbol is the complete AST for
the program

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-16

AST Generation in YACC/CUP

A result type can be specified for each
item in the grammar specification
Each parser rule can be annotated with
a semantic action, which is just a piece
of Java code that returns a value of the
result type
The semantic action is executed when
the rule is reduced

10/21/2010 © 2002-10 Hal Perkins & UW CSE H-17

ANTLR/JavaCC/others
Integrated tools like these can generate
syntax trees automatically

Advantage: saves work, don’t need to define
AST classes and write semantic actions
Disadvantage: generated trees might not have
the right level of abstraction for what you
want to do

For our project, do-it-yourself with CUP
The starter code contains the AST classes
from the minijava web site

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-18

Linear IRs

Pseudo-code for some abstract machine
Level of abstraction varies
Simple, compact data structures
Examples: three-address code, stack
machine code

Abstraction Levels in Linear IR

Linear IRs can also be close to the
source language, very low-level, or
somewhere in between.
Example: Linear IRs for C array
reference a[i][j+2]

High-level: t1 ← a[i,j+1]

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-19

IRs for a[i,j+2], cont.

Medium-level
t1 ← j + 2
t2 ← i * 20
t3 ← t1 + t2
t4 ← 4 * t3
t5 ← addr a
t6 ← t5 + t4
t7 ← *t6

Low-level
r1 ← [fp-4]
r2 ← r1 + 2
r3 ← [fp-8]
r4 ← r3 * 20
r5 ← r4 + r2
r6 ← 4 * r5
r7 ← fp – 216
f1 ← [r7+r6]

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-20

Abstraction Level Tradeoffs

High-level: good for source
optimizations, semantic checking
Low-level: need for good code
generation and resource utilization in
back end; many optimizing compilers
work at this level for middle/back ends
Medium-level: fine for optimization and
most other middle/back-end purposes

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-21

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-22

Hybrid IRs

Combination of structural and linear
Level of abstraction varies
Most common example: control-flow graph

Nodes: basic blocks – uninterrupted linear
sequences of instructions
Edge from B1 to B2 if execution can flow from
B1 to B2
More later when we survey optimization

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-23

What IR to Use?

Common choice: all(!)
AST or other structural representation built by
parser and used in early stages of the compiler

Closer to source code
Good for semantic analysis
Facilitates some higher-level optimizations

Lower to linear IR for later stages of compiler
Closer to machine code
Exposes machine-related optimizations
Use to build control-flow graph

10/21/2010 © 2002-10 Hal Perkins & UW CSE G-24

Coming Attractions

Working with ASTs
Where do the algorithms go?
Is it really object-oriented? (Does it matter?)

Visitor pattern
Then: Go back and look at LL (top-
down) parsing
After that: semantic analysis, type
checking, and symbol tables

