
10/23/2010 © 2002-10 Hal Perkins & UW CSE F-1

CSE 401 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins

Autumn 2010

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-2

Agenda

Top-Down Parsing
Predictive Parsers
LL(k) Grammars
Recursive Descent
Grammar Hacking

Left recursion removal
Factoring

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-3

Basic Parsing Strategies (1)

Bottom-up
Build up tree from leaves

Shift next input or reduce a handle
Accept when all input read and reduced to start
symbol of the grammar

LR(k) and subsets (SLR(k), LALR(k), …)

remaining input

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-4

Basic Parsing Strategies (2)

Top-Down
Begin at root with start symbol of grammar
Repeatedly pick a non-terminal and expand
Success when expanded tree matches input
LL(k)

A

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-5

Top-Down Parsing
Situation: have completed part of a derivation

S =>* wAα =>* wxy

Basic Step: Pick some production
A ::= β1 β2 … βn

that will properly expand A
to match the input

Want this to be
deterministic A

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-6

Predictive Parsing
If we are located at some non-terminal A,
and there are two or more possible
productions

A ::= α
A ::= β

we want to make the correct choice by
looking at just the next input symbol
If we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-7

Example
Programming language grammars are often
suitable for predictive parsing
Typical example

stmt ::= id = exp ; | return exp ;
| if (exp) stmt | while (exp) stmt

If the next part of the input begins with the
tokens

IF LPAREN ID(x) …

we should expand stmt to an if-statement

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-8

LL(k) Property

A grammar has the LL(1) property if,
for all non-terminals A, if productions
A ::= α and A ::= β both appear in the
grammar, then it is the case that

FIRST(α) FIRST(β) = Ø
If a grammar has the LL(1) property,
we can build a predictive parser for it
that uses 1-symbol lookahead

I

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-9

LL(k) Parsers

An LL(k) parser
Scans the input Left to right
Constructs a Leftmost derivation
Looking ahead at most k symbols

1-symbol lookahead is enough for
many practical programming language
grammars

LL(k) for k>1 is very rare in practice

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-10

Table-Driven LL(k) Parsers

As with LR(k), a table-driven parser can be
constructed from the grammar
Example

1. S ::= (S) S
2. S ::= [S] S
3. S ::= ε

Table
() [] $

S 1 3 2 3 3

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-11

LL vs LR (1)

Table-driven parsers for both LL and LR
can be automatically generated by tools
LL(1) has to make a decision based on
a single non-terminal and the next input
symbol
LR(1) can base the decision on the
entire left context (i.e., contents of the
stack) as well as the next input symbol

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-12

LL vs LR (2)

∴ LR(1) is more powerful than LL(1)
Includes a larger set of grammars

∴ (editorial opinion) If you’re going to
use a tool-generated parser, might as
well use LR

But there are some very good LL parser
tools out there (ANTLR, JavaCC, …) that
might win for other reasons

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-13

Recursive-Descent Parsers

An advantage of top-down parsing is
that it is easy to implement by hand
Key idea: write a function (procedure,
method) corresponding to each non-
terminal in the grammar

Each of these functions is responsible for
matching its non-terminal with the next
part of the input

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-14

Example: Statements
Grammar

stmt ::= id = exp ;
| return exp ;
| if (exp) stmt
| while (exp) stmt

Method for this grammar rule
// parse stmt ::= id=exp; | …
void stmt() {
switch(nextToken) {

RETURN: returnStmt(); break;
IF: ifStmt(); break;
WHILE: whileStmt(); break;
ID: assignStmt(); break;

}
}

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-15

Example (cont)
// parse while (exp) stmt
void whileStmt() {

// skip “while” “(”
getNextToken();
getNextToken();

// parse condition
exp();

// skip “)”
getNextToken();

// parse stmt
stmt();

}

// parse return exp ;
void returnStmt() {

// skip “return”
getNextToken();

// parse expression
exp();

// skip “;”
getNextToken();

}

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-16

Invariant for Parser Functions

The parser functions need to agree on where
they are in the input
Useful invariant: When a parser function is
called, the current token (next unprocessed
piece of the input) is the token that begins
the expanded non-terminal being parsed

Corollary: when a parser function is done, it must
have completely consumed input correspond to
that non-terminal

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-17

Possible Problems

Two common problems for recursive-
descent (and LL(1)) parsers

Left recursion (e.g., E ::= E + T | …)
Common prefixes on the right side of
productions

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-18

Left Recursion Problem
Grammar rule

expr ::= expr + term
| term

And the bug is????

Code
// parse expr ::= …
void expr() {

expr();
if (current token is

PLUS) {
getNextToken();
term();

}
}

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-19

Left Recursion Problem

If we code up a left-recursive rule as-is,
we get an infinite recursion
Non-solution: replace with a right-
recursive rule

expr ::= term + expr | term
Why isn’t this the right thing to do?

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-20

One Left Recursion Solution
Rewrite using right recursion and a new non-
terminal
Original: expr ::= expr + term | term
New

expr ::= term exprtail
exprtail ::= + term exprtail | ε

Properties
No infinite recursion if coded up directly
Maintains left associatively (required)

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-21

Another Way to Look at This

Observe that
expr ::= expr + term | term

generates the sequence
(…((term + term) + term) + …) + term

We can sugar the original rule to reflect
this

expr ::= term { + term }*
This leads directly to parser code

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-22

Code for Expressions (1)
// parse
// expr ::= term { + term }*
void expr() {

term();
while (next symbol is PLUS) {

getNextToken();
term()

}
}

// parse
// term ::= factor { * factor }*
void term() {

factor();
while (next symbol is TIMES) {

getNextToken();
factor()

}
}

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-23

Code for Expressions (2)
// parse
// factor ::= int | id | (expr)
void factor() {

switch(nextToken) {

case INT:
process int constant;
getNextToken();
break;

…

case ID:
process identifier;
getNextToken();
break;

case LPAREN:
getNextToken();
expr();
getNextToken();

}
}

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-24

What About Indirect Left
Recursion?

A grammar might have a derivation that
leads to a left recursion

A => β1 =>* βn => A γ
There are systematic ways to factor
such grammars

See any good compiler book

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-25

Left Factoring

If two rules for a non-terminal have
right hand sides that begin with the
same symbol, we can’t predict which
one to use
Solution: Factor the common prefix into
a separate production

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-26

Left Factoring Example

Original grammar
ifStmt ::= if (expr) stmt

| if (expr) stmt else stmt
Factored grammar

ifStmt ::= if (expr) stmt ifTail
ifTail ::= else stmt | ε

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-27

Parsing if Statements
But it’s easiest to just
code up the “else
matches closest if”
rule directly

// parse
// if (expr) stmt [else stmt]
void ifStmt() {

getNextToken();
getNextToken();
expr();
getNextToken();
stmt();
if (next symbol is ELSE) {

getNextToken();
stmt();

}
}

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-28

Another Lookahead Problem

In languages like FORTRAN, parentheses are
used for array subscripts
A FORTRAN grammar includes something like

factor ::= id (subscripts) | id (arguments) | …

When the parser sees “id (”, how can it
decide whether this begins an array element
reference or a function call?

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-29

Two Ways to Handle id (?)

Use the type of id to decide
Requires declare-before-use restriction if
we want to parse in 1 pass

Use a covering grammar
factor ::= id (commaSeparatedList) | …

and fix/check later when more
information is available (e.g., types)

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-30

Top-Down Parsing Concluded

Works with a smaller set of grammars
than bottom-up, but can be done for
most sensible programming language
constructs
If you need to write a quick-n-dirty
parser, recursive descent is often the
method of choice

10/23/2010 © 2002-10 Hal Perkins & UW CSE F-31

Parsing Concluded

That’s it!
On to the rest of the compiler
Coming attractions

Intermediate representations (ASTs etc.)
Semantic analysis (including type checking)
Symbol tables
& more…

