
CSE 401 – CompilersCSE 401 Compilers

Two Cool Algorithms: Instruction
Selection and Register Allocationg

Hal Perkins
Winter 2009

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-1

Winter 2009

Agenda

We’ve seen how minijava handles code gen
This lecture

Instruction selection by tree pattern matching
Register allocation by graph coloring

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-2

A Simple Low-Level IR (1)
We want a low-level similar to Minijava’s IL. But
much simpler here for the examples.
Expressions:Expressions:

CONST(i) – integer constant i
TEMP(t) – temporary t (i.e., register)
BINOP(1 2) li ti f t 1 2BINOP(op,e1,e2) – application of op to e1,e2
MEM(e) – contents of memory at address e

Means value when used in an expression
Means add ess hen sed on left side of assignmentMeans address when used on left side of assignment

CALL(f,args) – application of function f to argument list args

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-3

Simple Low-Level IR (2)
Statements

MOVE(TEMP t, e) – evaluate e and store in temporary t
MOVE(MEM(e1) e2) – evaluate e1 to yield address a;MOVE(MEM(e1), e2) – evaluate e1 to yield address a;
evaluate e2 and store at a
EXP(e) – evaluate expressions e and discard result
SEQ(s1 s2) – execute s1 followed by s2SEQ(s1,s2) execute s1 followed by s2
NAME(n) – assembly language label n
JUMP(e) – jump to e, which can be a NAME label, or more
compex (e.g., switch)compex (e.g., switch)
CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to
label t, otherwise jump to f
LABEL(n) – defines location of label n in the code

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-4

()

Low-Level IR Example (1)

For a local variable at a known offset k
from the frame pointer fpfrom the frame pointer fp

Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))MEM(BINOP(PLUS, TEMP fp, CONST k))

Tree
MEM

+

TEMP fp CONST k

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-5

p

Low-Level IR Example (2)

For an array element e[k], where each
element takes up w storage locationselement takes up w storage locations

MEM

+

MEM *

e k CONST

w

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-6

Instruction Selection Issues

Given the low-level IR, there are many
possible code sequences that p q
implement it correctly

e.g. to set eax to 0 on x86
mov eax,0 xor eax,eax
sub eax,eax imul eax,0

Many machine instructions do severalMany machine instructions do several
things at once – e.g., register arithmetic
and effective address calculation

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-7

Implementation
Problem: We need some representation of
the target machine instruction set that
facilitates code generationfacilitates code generation
Idea: Describe machine instructions using
same low-level IR used for program
Use pattern matching techniques to pick
machine instructions that match fragments of
the program IR treet e p og a t ee

Want this to run quickly
Would like to automate as much as possible

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-8

Matching: How?
Tree IR – pattern match on trees

Tree patterns as input
Each pattern maps to target machine instruction (orEach pattern maps to target machine instruction (or
sequence)
Use dynamic programming or bottom-up rewrite system
(BURS)()

Linear IR – some sort of string matching
Strings as input
Each string maps to target machine instruction sequenceEach string maps to target machine instruction sequence
Use text matching or peephole matching

Both work well in practice; actual algorithms are
quite different

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-9

quite different

An Example Target Machine (1)

Arithmetic Instructions
(unnamed) ri TEMP(unnamed) ri TEMP
ADD ri <- rj + rk +

MUL ri <- rj * rk
*

SUB and DIV are similar

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-10

An Example Target Machine (2)

Immediate Instructons
ADDI ri <- rj + cADDI ri < rj + c

+ + CONST

SUBI ri < rj c

CONST CONST

SUBI ri <- rj - c
-

CONST

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-11

CONST

An Example Target Machine (3)

Load
LOAD ri <- M[rj + c]LOAD ri < M[rj + c]

+ + CONST

MEM MEM MEM MEM

+

CONST

+

CONST

CONST

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-12

An Example Target Machine (4)

Store
STORE M[rj + c] <- riSTORE M[rj + c] < ri

MOVE MOVE MOVE MOVE

+ + CONST

MEM MEM MEM MEM

CONST CONST

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-13

Tree Pattern Matching (1)

Goal: Tile the low-level tree with
operation (instruction) treesoperation (instruction) trees
A tiling is a collection of <node,op>
pairspairs

node is a node in the tree
op is an operation treeop is an operation tree
<node,op> means that op could
implement the subtree at node

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-14

implement the subtree at node

Tree Pattern Matching (2)

A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node

If <node,op> is in the tiling, then node is also
co e ed b a leaf in anothe ope ation t ee in thecovered by a leaf in another operation tree in the
tiling – unless it is the root
Where two operation trees meet, they must be p , y
compatible (i.e., expect the same value in the
same location)

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-15

Generating Code

Two ways to get good tilings
Maximal munch: walk the tree top-downMaximal munch: walk the tree top down.
At each node find the largest node that fits
(covers the largest subtree at that point).
Dynamic programming:

Assign a cost to each node in the tree = Σ cost
of that node + subtrees
Try all possible combinations bottom-up and
pick minimal cost at each subtree

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-16

pick minimal cost at each subtree

Example

Codegen for a[i] = x, where i is a register
variable, and a and x are memory resident

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-17

Register Allocation by Graph
Coloring

How to convert the infinite sequence of
temporary data references, t1, t2, … into finite
assignment register numbers $8 $9 $25assignment register numbers $8, $9, …, $25
Goal: Use available registers with minimum
spillingspilling
Problem: Minimizing the number of registers is
NP-complete … it is equivalent to chromatic

b i i l t l d fnumber--minimum colors to color nodes of
graph so no edge connects same color

Begin With Data Flow Graph

procedure-wide register allocation
only live variables require register storagey q g g

dataflow analysis: a variable is live at node N if
the value it holds is used on some path furtherthe value it holds is used on some path further

down the control-flow graph; otherwise it is dead

two variables(values) interfere when their
live ranges overlapg p

Live Variable Analysis
a := read();a := read();

b := read();
c := read(); c

a
b

a := read();
b := read();
c := read();c : read();

d := a + b*c;
c

d d := a + b*c;
if (d < 10) then

e := c+8;
d < 10

+8 f 10 fe

;
print(c);

else
f := 10;e := c+8;

print(c);
f := 10;

e := f + d;
print(f);

fe

e

f := 10;
e := f + d;
print(f);

print(e);

fi
print(e);

Register Interference Graph
a := read();
b := read();
c := read(); c

a
b

a b
c : read();
d := a + b*c;

c
d

dc
d < 10

+8 f 10 fe

dc

fe := c+8;
print(c);

f := 10;
e := f + d;
print(f);

fe

e
e f

print(e);

Graph Coloring
a b

NP complete problem
dc

Heuristic: color easy nodes last
find node N with lowest degree

f
remove N from the graph
color the simplified graph

e f

set color of N to the first color that is not used
by any of N ’s neighbors

Basics due to Chaitin (1982)Basics due to Chaitin (1982)

Apply Heuristic

a ba b

dcdc

e fe f e fe f

Apply Heuristic

a ba b a b

dcdc dc

e fe f e fe fe f e f

Apply Heuristic

a ba b a b a b

dcdc dc dc

e fe f e f e fe fe f e f e f

Continued
a b a b

dc dc

e f e f

Continued
a b a b a b

dc dc dc

e f e f e f

Continued
a b a b a b a b

dc dc dc dc

e f e f e f e f

Continued

a b a b

dc dc

e f e f

Continued

a b a b a b

dc dc dc

e f e f e f

Continued
a b

dc

e f

Continued
a b a b

dc dc

e f e f

Final Assignment

a b
a := read();
b := read();
c := read();

dc

()
d := a + b*c;

if (d < 10) then
e := c+8;

e f

e := c+8;
print(c);
else
f := 10;

e := f + d;
print(f);p

fi
print(e);

Some Graph Coloring Issues

May run out of registers
Solution: insert spill code and reallocateSolution: insert spill code and reallocate

Special-purpose and dedicated registers
Examples: function return register functionExamples: function return register, function
argument registers, registers required for
particular instructionsparticular instructions
Solution: “pre-color” some nodes to force
allocation to a particular registerallocation to a particular register

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-34

Exercise
{ int tmp_2ab = 2*a*b;

int tmp_aa = a*a;
int tmp bb = b*b;p_

x := tmp_aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_2ab + tmp_bb;

given that a and b are live on entry and dead on exit

}

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph() g g p
(b) color the graph; how many registers are needed?

4 Registers Needed

a tmp_2ab x y

bbb tmp_bbtmp_aab

