* CSE 401 — Compilers

Two Cool Algorithms: Instruction
Selection and Register Allocation

Hal Perkins
Winter 2009

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-1

:-| Agenda

= We've seen how minijava handles code gen

= This lecture
= Instruction selection by tree pattern matching
= Register allocation by graph coloring

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-2

A Simple Low-Level IR (1)

= We want a low-level similar to Minijava’s IL. But
much simpler here for the examples.
= Expressions:
= CONST(i) — integer constant i
= TEMP(t) — temporary t (i.e., register)
= BINOP(op,el,e2) — application of op to el,e2
= MEM(e) — contents of memory at address e
= Means value when used in an expression
= Means address when used on left side of assignment
= CALL(f,args) — application of function f to argument list args

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-3

Simple Low-Level IR (2)

= Statements
MOVE(TEMP t, e) — evaluate e and store in temporary t

MOVE(MEM(el), e2) — evaluate el to yield address a;
evaluate e2 and store at a

EXP(e) — evaluate expressions e and discard result
SEQ(s1,s2) — execute sl followed by s2

NAME(n) — assembly language label n

JUMP(e) — jump to e, which can be a NAME label, or more
compex (e.g., switch)

CJUMP(op,el,e2,t,f) — evaluate el op e2; if true jump to
label t, otherwise jump to f

LABEL(n) — defines location of label n in the code

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-4

3 Low-Level IR Example (1)

= For a local variable at a known offset k
from the frame pointer fp
= Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))

= Tree
MEM

+

PN

TEMP fp CONST k

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-5

CSE 401 Wi09

:-‘ Low-Level IR Example (2)

= For an array element e[k], where each
element takes up w storage locations

MEM
|
+
MEM *
| N
e k CONST
I
w
3/5/2009 © 2002-09 Hal Perkins & UW CSE N-6

N-1

Instruction Selection Issues

= Given the low-level IR, there are many
possible code sequences that
implement it correctly
= e.g. to set eax to 0 on x86
mov eax,0 XOr eax,eax
sub eax,eax imul eax,0
= Many machine instructions do several
things at once — e.qg., register arithmetic
and effective address calculation

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-7

Implementation

= Problem: We need some representation of
the target machine instruction set that
facilitates code generation

= ldea: Describe machine instructions using
same low-level IR used for program

= Use pattern matching techniques to pick
machine instructions that match fragments of
the program IR tree
= Want this to run quickly
= Would like to automate as much as possible

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-8

Matching: How?

= Tree IR — pattern match on trees
= Tree patterns as input
= Each pattern maps to target machine instruction (or
sequence)
= Use dynamic programming or bottom-up rewrite system
(BURS)
= Linear IR — some sort of string matching
= Strings as input
= Each string maps to target machine instruction sequence
= Use text matching or peephole matching
= Both work well in practice; actual algorithms are
quite different

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-9

:.| An Example Target Machine (1)

= Arithmetic Instructions

= (unnamed) ri TEMP
s ADDri<-r1j +rk +
N

*

= MUL ri <-1j * rk N
= SUB and DIV are similar

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-10

2 An Example Target Machine (2)

= Immediate Instructons
=« ADDIri<-rj+c
+ + CONST

/\/\

CONST CONST

=« SUBIri<-rj-cC
N

CONST

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-11

:-‘ An Example Target Machine (3)

= Load
= LOAD ri <- M[rj + c]
MEM MEM MEM MEM
. . cons |

/\/\

CONST CONST

3/5/2009 ®© 2002-09 Hal Perkins & UW CSE N-12

CSE 401 Wi09

N-2

2 An Example Target Machine (4)

= Store
= STORE M[rj +c] <-ri

MOVE MOVE MOVE MOVE
PN SN PN PN
MEM MEM MEM MEM

+ + CONST
/\ /\

CONST CONST

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-13

:-| Tree Pattern Matching (1)

= Goal: Tile the low-level tree with
operation (instruction) trees

= A tiling is a collection of <node,op>
pairs
= node is a node in the tree
= Op is an operation tree
= <node,op> means that op could

implement the subtree at node

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-14

3 Tree Pattern Matching (2)

= A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node
= If <node,op> is in the tiling, then node is also
covered by a leaf in another operation tree in the
tiling — unless it is the root

= Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-15

:.| Generating Code

= Two ways to get good tilings
= Maximal munch: walk the tree top-down.
At each node find the largest node that fits
(covers the largest subtree at that point).
= Dynamic programming:
= Assign a cost to each node in the tree = X cost
of that node + subtrees

= Try all possible combinations bottom-up and
pick minimal cost at each subtree

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-16

Example

= Codegen for a[i] = x, where i is a register
variable, and a and x are memory resident

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-17

CSE 401 Wi09

Register Allocation by Graph
Coloring

= How to convert the infinite sequence of
temporary data references, t1, t2, ... into finite
assignment register numbers $8, $9, ..., $25

= Goal: Use available registers with minimum
spilling

= Problem: Minimizing the number of registers is
NP-complete ... it is equivalent to chromatic
number--minimum colors to color nodes of
graph so no edge connects same color

N-3

3 Begin With Data Flow Graph

= procedure-wide register allocation
= only live variables require register storage

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further
down the control-flow graph; otherwise it is dead

= two variables(values) interfere when their
live ranges overlap

Live Variable Analysis

a := read(); a := readQ);
b := readQ); b :=read();
c := read(); ¢ := readQ

d := a + b*c; d d = a+ bc;

if (d < 10) then
/ e I= c+8;

d < 10 print(c);

/ else

e 1= c+8; f := 10; f = 10;
print(c); e := f + d; e := f +d;
print(f); print(f);
__— fi
rint(e); print(e);

Register Interference Graph

a ead();
b := readQ);
c = read();
d := a + b*c; d
/ d
d < 10
e 1= ct+8; f = 10; T

print(c); e :=f +d;
print(f);

!.| Graph Coloring

= NP complete problem

= Heuristic: color easy nodes last
= find node N with lowest degree
= remove N from the graph
= color the simplified graph
= set color of NVto the first color that is not used
by any of NV's neighbors

= Basics due to Chaitin (1982)

3 Apply Heuristic

a

:‘ Apply Heuristic

a a b
d d d

‘o

CSE 401 Wi09

N-4

!’ Apply Heuristic

pEy

;’ Continued

;’ Continued

CSE 401 Wi09

N-5

3 Continued

a

=)

!-| Continued

a a

= =

3 Final Assignment
= read();

a

b
c
d
if (d < 10) then
e I= c+8;
print(c);
else
f = 10;
e := f +d;
print(f);
fi
print(e);

!.| Some Graph Coloring Issues

= May run out of registers
= Solution: insert spill code and reallocate
= Special-purpose and dedicated registers

= Examples: function return register, function
argument registers, registers required for
particular instructions

= Solution: “pre-color” some nodes to force
allocation to a particular register

3/5/2009 © 2002-09 Hal Perkins & UW CSE N-34

3 Exercise

{ int tmp_2ab = 2*a*b;
int tmp_aa a*a;
int tmp_bb b*b;

X I
y
¥

tmp_aa + tmp_2ab + tmp_bb;
tmp_aa - tmp_2ab + tmp_bb;

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:

(a) construct the register interference graph

(b) color the graph; how many registers are needed?

:‘ 4 Registers Needed

tmp_2ab .

CSE 401 Wi09

N-6

