!'_ CSE 401 — Compilers

Xx86 Lite for Compiler Writers
Hal Perkins
Winter 2009

2/22/2009 © 2002-09 Hal Perkins & UW CSE

J-1

i Agenda

= Overview of x86 architecture
= Core 32-bit part only, not old compatibility cruft
s Later

= Survey of MiniJava’s code generator and
mapping MiniJava to x86 code

= More sophisticated back-end algorithms
= Survey of compiler optimizations

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-2

Xx86 Selected History

s 30 Years of x86

1978: 8086 — 16-bit processor, segmentation
1982: 80286 — protected mode, floating point

1985: 80386 — 32-bit architecture, “general-purpose”
register set, virtual memory

1993: Pentium — mmx

1999: Pentium Il — SSE

2000-06: Pentium IV — SSE2, SSE3, HT, virtualization
2006: Core & Core 2 — Multicore, SSE4+, virtualization

= Many internal implementation changes, pipelining,
concurrency, &c

2/22/2009

© 2002-09 Hal Perkins & UW CSE J-3

i And It's Backward-Compatible!

= Current processors will run code written for the
8086(!)

= (You can get VisiCalc 1.0 & others on the web!)

= .. The Intel descriptions are loaded down with
modes and flags that obscure the modern,
fairly simple 32-bit processor model

= Modern processors have a RISC-like core

= Simple, register-register & load/store architecture

= Simple x86 instructions preferred; complex CISC
Instructions supported for compatibility

= We’'ll focus on the basic 32-bit core instructions

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-4

i x86 Assembler

= Nice thing about standards...

= Two main assembler languages for x86

= Intel/Microsoft version — what's in the
documentation

= GNU assembler — what we're generating
= Slides use Intel descriptions
= Brief information later on differences

= And the x86 codegen in MiniJava is already
there so you can just see what it does

2/22/2009 © 2002-09 Hal Perkins & UW CSE

J-5

i Intel ASM Statements

= Format is
optLabel: opcode operands ; comment
= optLabel is an optional label

= opcode and operands make up the assembly
language instruction

= Anything following a ‘;’ is a comment

= Language is very free-form

= Comments and labels may appear on separate
lines by themselves (we’ll take advantage of this)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-6

i x86 Memory Model

= 8-bit bytes, byte addressable
= 16-, 32-, 64-bit words, doublewords,
and quadwords

= Data should almost always be aligned on
“natural” boundaries; huge performance
penalty on modern processors if it isn’t

= Little-endian — address of a 4-byte
Integer Is address of low-order byte

2/22/2009 © 2002-09 Hal Perkins & UW CSE

J-7

Processor Registers

= 8 32-bit, mostly general purpose registers
= eax, ebx, ecx, edx, esi, edi, ebp (base pointer),
esp (stack pointer)
= Other registers, not directly addressable

= 32-bit eflags register
=« Holds condition codes, processor state, etc.

= 32-bit “instruction pointer” eip
= Holds address of first byte of next instruction to execute

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-8

i Processor Fetch-Execute Cycle

= Basic cycle (same as every processor you've
ever seen)
while (running) {
fetch instruction beginning at eip address
eip <- eip + Instruction length
execute instruction

¥

= Seqguential execution unless a jump stores a
new “next instruction” address Iin eip

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-9

i Instruction Format

= Typical data manipulation instruction
= opcode dst,src

= Meaning Is
= dst <-dstop src

= Normally, one operand is a register, the
other Is a register, memory location, or
Integer constant

= In particular, can’t have both operands in
memory — not enough bits to encode this

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-10

i x86 Memory Stack

= Register esp points to the “top” of stack
= Dedicated for this use; don’t use otherwise

= Points to the last 32-bit doubleword

oushed onto the stack (not next “free”
dblword)

= Should always be doubleword aligned

= It will start out this way, and will stay aligned
unless your code does something bad

= Stack grows down

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-11

i Stack Instructions

push src
= esp <- esp — 4; memory[esp] <- src
(e.g., push src onto the stack)
pop dst
= dst <- memory[esp]; esp <-esp + 4

(e.g., pop top of stack into dst and logically
remove it from the stack)

= These are highly optimized and heavily used

= The x86 doesn’t have enough registers, so the
stack is frequently used for temporary space

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-12

i Stack Frames

= When a method is called, a sfack frame is
traditionally allocated on the top of the stack
to hold its local variables

= Frame is popped on method return

= By convention, ebp (base pointer) points to a
known offset into the stack frame

= Local variables referenced relative to ebp

= (This is often optimized to use esp-relative
addresses instead. Frees up ebp, needs additional
bookkeeping at compile time)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-13

i Operand Address Modes (1)

s These should cover most of what we’ll need

mov eax,17/ ; store 17 Iin eax
MOV eax,ecx ; COpYy ecx to eax
mov eax,[ebp-12] ; copy memory to eax
mov [ebp+8],eax , COpy eax to memory

= References to object fields work similarly —
put the object’'s memory address in a register
and use that address plus an offset

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-14

i Operand Address Modes (2)

In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus
a constant displacement:

[basereg + index*scale + constant]
= Scale can be 2, 4, 8

= Main use is for array subscripting

= Example: suppose
= Array of 4-byte ints
= Address of the array A Is in ecx
= Subscript i is in eax
= Code to store ecx in A[i]
mov [ecx+eax™*4],ecx

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-15

Basic Data Movement and
i Arithmetic Instructions

mov dst,src INnC dst

= dst <- src = dst<-dst+ 1
add dst,src dec dst

= dst <- dst + src = dst <-dst-1
sub dst,src neg dst

= dst <- dst — src = dst <- - dst

(2's complement
arithmetic negation)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-16

Integer Multiply and Divide

Imul dst,src idiv src
= dst <- dst * src = Divide edx:eax by src
= 32-bit product (edx:eax holds sign-

extended 64-bit value;

= dst must be a register
cannot use other

imul dst,src,imm38 registers for division)
= dst <- dst*src*imm8 = eax <- quotient
= Imm38 — 8 bit constant = edx <- remainder

o Obs_cqr(_e, but useful for cdg
optimizing array
subscripts (but address
modes can do simple
scaling)

= edx:eax <- 64-bit sign
extended copy of eax

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-17

i Bitwise Operations

and dst,src not dst
= dst <- dst & src = dst <- — dst
or dst src (logical or 1's
! complement
= dst <-dst| src ¥)
xor dst,src

s dst <- dst ™ src

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-18

i Shifts and Rotates

shl dst,count sar dst,count
= dst shifted left count = dst <- dst shifted
bits right count bits (sign
shr dst,count it ill)
« dst <- dst shifted rol dst,count
right count bits (O = dst <- dst rotated
fill) left count bits

ror dst,count

= dst <- dst rotated
right count bits

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-19

i Load Effective Address

= The unary & operator in C
lea dst,src , dst <- address of src
= dst must be a register

= Address of src includes any address
arithmetic or indexing

= Useful to capture addresses for pointers,
reference parameters, etc.

= Also useful for computing arithmetic
expressions that match address arithmetic

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-20

‘L Unconditional Jumps

Jjmp dst

= eip <- address of dst

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-21

i Conditional Jumps

= Most arithmetic instructions set bits in eflags
to record information about the result (zero,
non-zero, positive, etc.)

= True of add, sub, and, or; but not imul or idiv

= Other instructions that set eflags
cmp dst,src , compare dst to src

test dst,src ; calculate dst & src (logical
; and); doesn’t change either

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-22

Conditional Jumps Following
Arithmetic Operations

Jz
jnz
19
Ing
ige
jnge
Jl

jnl
jle
jnle

= Obviously, the assembler Is providing multiple opcode

label
label
label
label
label
label
label
label
label
label

; jump if result ==

; jump if result 1= 0
; jump if result > 0

; jump if result <=0
; jump if result >= 0
; jump if result < 0

; jump if result < O

; jump if result >= 0
; jump if result <=0
; jump if result > 0

mnemonics for individual instructions

2/22/2009

© 2002-09 Hal Perkins & UW CSE

J-23

Compare and Jump

i Conditionally

s Want:
If are

= Woulo

compare two operands and jump
ationship holds between them

like to do this

jm

D opl,op2,label

cond

but can’t, because 3-address
Instructions can’'t be encoded In x86

(true of most other machines for that matter)

2/22/2009

© 2002-09 Hal Perkins & UW CSE J-24

i cmp and jcc

= Instead, use a 2-instruction sequence
cmp opl,op2
jcc label
where jcc Is a conditional jump that is

taken If the result of the comparison
matches the condition cc

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-25

Conditional Jumps Following
Arithmetic Operations

je
jne
19
Ing
ige
jnge
1

jnl
jle
jnle

= Again, the assembler is mapping more than one mnemonic to

label
label
label
label
label
label
label
label
label
label

; jump If opl == op2
; jump if opl '= op2
; jump if opl > op2

; jump if opl <= op2
; jump if opl >= op2
; jump if opl < op2

; jJump if opl < op2

; jump if opl >= op2
; jump if opl <= op2
; jump if opl > op2

some machine instructions

2/22/2009

© 2002-09 Hal Perkins & UW CSE

J-26

i Function Call and Return

= The x86 instruction set itself only provides for
transfer of control (Jump) and return

= Stack Is used to capture return address and
recover it

= Everything else — parameter passing, stack
frame organization, register usage — Is a
matter of convention and not defined by the
hardware

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-27

i call and ret Instructions

call label
= Push address of next instruction and jump

= esp <- esp—4; memory[esp] <- elp
eip <- address of label

= Pop address from top of stack and jump
= eip <- memory|[esp]; esp <-esp + 4

= WARNING! The word on the top of the stack had
better be an address, not some leftover data

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-28

Win 32 C Function Call
i Conventions

= Wintel code obeys the following
conventions for C programs

= Note: calling conventions normally
designed very early in the instruction set/
basic software design. Hard (e.g., basically
Impossible) to change later.

= C++ augments these conventions to
handle the “this” pointer

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-29

i Win32 C Register Conventions

= These registers must be restored to their original
values before a function returns, if they are
altered during execution
esp, ebp, ebx, esi, edi
= Traditional: push/pop from stack to save/restore

= A function may use the other registers (eax, ecx,
edx) however 1t wants, without having to
save/restore them

= A 32-bit function result is expected to be in eax
when the function returns

= Generated code can REt away with bending the
rules, but watch it when you call external C code

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-30

i Call Site

= Caller is responsible for

= Pushing arguments on the stack from right
to left (allows implementation of varargs)

= Execute call instruction

= Pop arguments from stack after return

= For us, this means add 4*(# arguments) to esp
after the return, since everything is either a 32-
bit variable (int, bool), or a reference (pointer)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-31

i Call Example

n = sumOf(17,42)

2/22/2009

push 42 , push args
push 17
call sumOf , jump &

, push addr
add esp,8 , pOp args

mov [ebp+offset], eax ; store result

© 2002-09 Hal Perkins & UW CSE J-32

i Callee

= Called function must do the following

= Save registers If necessary

= Allocate stack frame for local variables

= Execute function body

= Ensure result of non-void function is in eax
= Restore any required registers if necessary
= Pop the stack frame
= Return to caller

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-33

i Win32 Function Prologue

= The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologue
= For a Win32 function /£, it looks like this:
f: push ebp ; save old frame pointer
mov ebp,esp ; hew frame ptr is top of
, stack after arguments and

, return address are pushed
sub esp,’# bytes needed”

- allocate stack frame

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-34

Win32 Function Epilogue

= The epilogue is the code that is executed to obey a
return statement (or if execution “falls off” the
bottom of a void function)

s For a WIin32 function, it looks like this:
mov eax,”function result”

; put result in eax If not already
; there (if non-void function)

mov esp,ebp ; restore esp to old value

; before stack frame allocated
pop ebp ; restore ebp to caller’s value
ret ; return to caller

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-35

i Example Function

= Source code
int sumOf(int x, inty) {
Int a, Iint b;
a=xX;
b=a-+y,
return b;

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-36

int sumOf(int x, inty) {
int a, int b;
a=x;
b=a-+y;

‘L Stack Frame for sumOf , =

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-37

i Assembly Language Version

;; Int sumOf(int x, inty) {
;; Int a, int b;
sumOf:
push ebp , prologue
mov ebp,esp
sub esp, 8

y d = X,
mov eax,[ebp+8]
mov [ebp-4],eax

s b=a+ty;
mov eax,[ebp-4]
add eax,[ebp+12]
mov [ebp-8],eax

;; return b;
mov eax,[ebp-8]
mov esp,ebp

pop ebp
ret

5}

2/22/2009 © 2002-09 Hal Perkins & UW CSE

J-38

