
CSE 401 Wi09 J-1

CSE 401 – Compilers

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-1

x86 Lite for Compiler Writers
Hal Perkins
Winter 2009

Agenda

Overview of x86 architecture
Core 32-bit part only, not old compatibility cruft

Later

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-2

Later
Survey of MiniJava’s code generator and
mapping MiniJava to x86 code
More sophisticated back-end algorithms
Survey of compiler optimizations

x86 Selected History
30 Years of x86

1978: 8086 – 16-bit processor, segmentation
1982: 80286 – protected mode, floating point
1985: 80386 – 32-bit architecture, “general-purpose”

i t t i t lregister set, virtual memory
1993: Pentium – mmx
1999: Pentium III – SSE
2000-06: Pentium IV – SSE2, SSE3, HT, virtualization
2006: Core & Core 2 – Multicore, SSE4+, virtualization

Many internal implementation changes, pipelining,
concurrency, &c

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-3

And It’s Backward-Compatible!
Current processors will run code written for the
8086(!)

(You can get VisiCalc 1.0 & others on the web!)
∴ The Intel descriptions are loaded down with e te desc pt o s a e oaded do t
modes and flags that obscure the modern,
fairly simple 32-bit processor model
Modern processors have a RISC-like core

Simple, register-register & load/store architecture
Simple x86 instructions preferred; complex CISC
instructions supported for compatibility

We’ll focus on the basic 32-bit core instructions

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-4

x86 Assembler
Nice thing about standards…
Two main assembler languages for x86

Intel/Microsoft version – what’s in the
documentationdocumentation
GNU assembler – what we’re generating

Slides use Intel descriptions
Brief information later on differences
And the x86 codegen in MiniJava is already
there so you can just see what it does

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-5

Intel ASM Statements

Format is
optLabel: opcode operands ; comment

optLabel is an optional label

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-6

opcode and operands make up the assembly
language instruction
Anything following a ‘;’ is a comment

Language is very free-form
Comments and labels may appear on separate
lines by themselves (we’ll take advantage of this)

CSE 401 Wi09 J-2

x86 Memory Model

8-bit bytes, byte addressable
16-, 32-, 64-bit words, doublewords,
and quadwords

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-7

and quadwords
Data should almost always be aligned on
“natural” boundaries; huge performance
penalty on modern processors if it isn’t

Little-endian – address of a 4-byte
integer is address of low-order byte

Processor Registers

8 32-bit, mostly general purpose registers
eax, ebx, ecx, edx, esi, edi, ebp (base pointer),
esp (stack pointer)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-8

Other registers, not directly addressable
32-bit eflags register

Holds condition codes, processor state, etc.

32-bit “instruction pointer” eip
Holds address of first byte of next instruction to execute

Processor Fetch-Execute Cycle

Basic cycle (same as every processor you’ve
ever seen)

while (running) {

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-9

fetch instruction beginning at eip address
eip <- eip + instruction length
execute instruction

}

Sequential execution unless a jump stores a
new “next instruction” address in eip

Instruction Format

Typical data manipulation instruction
opcode dst,src

Meaning is
dst <- dst op src

Normally, one operand is a register, the
other is a register, memory location, or
integer constant

In particular, can’t have both operands in
memory – not enough bits to encode this

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-10

x86 Memory Stack

Register esp points to the “top” of stack
Dedicated for this use; don’t use otherwise
Points to the last 32-bit doubleword

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-11

pushed onto the stack (not next “free”
dblword)
Should always be doubleword aligned

It will start out this way, and will stay aligned
unless your code does something bad

Stack grows down

Stack Instructions
push src

esp <- esp – 4; memory[esp] <- src
(e.g., push src onto the stack)

pop dst

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-12

pop dst
dst <- memory[esp]; esp <- esp + 4
(e.g., pop top of stack into dst and logically
remove it from the stack)

These are highly optimized and heavily used
The x86 doesn’t have enough registers, so the
stack is frequently used for temporary space

CSE 401 Wi09 J-3

Stack Frames
When a method is called, a stack frame is
traditionally allocated on the top of the stack
to hold its local variables
Frame is popped on method return

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-13

Frame is popped on method return
By convention, ebp (base pointer) points to a
known offset into the stack frame

Local variables referenced relative to ebp
(This is often optimized to use esp-relative
addresses instead. Frees up ebp, needs additional
bookkeeping at compile time)

Operand Address Modes (1)

These should cover most of what we’ll need
mov eax,17 ; store 17 in eax
mov eax,ecx ; copy ecx to eax

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-14

mov eax,[ebp-12] ; copy memory to eax
mov [ebp+8],eax ; copy eax to memory

References to object fields work similarly –
put the object’s memory address in a register
and use that address plus an offset

Operand Address Modes (2)
In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus
a constant displacement:

[basereg + index*scale + constant]
Scale can be 2 4 8

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-15

Scale can be 2, 4, 8
Main use is for array subscripting
Example: suppose

Array of 4-byte ints
Address of the array A is in ecx
Subscript i is in eax
Code to store ecx in A[i]
mov [ecx+eax*4],ecx

Basic Data Movement and
Arithmetic Instructions

mov dst,src
dst <- src

add dst,src

inc dst
dst <- dst + 1

dec dst

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-16

,
dst <- dst + src

sub dst,src
dst <- dst – src

dst <- dst - 1

neg dst
dst <- - dst
(2’s complement
arithmetic negation)

Integer Multiply and Divide
imul dst,src

dst <- dst * src
32-bit product
dst must be a register

idiv src
Divide edx:eax by src
(edx:eax holds sign-
extended 64-bit value;

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-17

dst must be a register

imul dst,src,imm8
dst <- dst*src*imm8
imm8 – 8 bit constant
Obscure, but useful for
optimizing array
subscripts (but address
modes can do simple
scaling)

cannot use other
registers for division)
eax <- quotient
edx <- remainder

cdq
edx:eax <- 64-bit sign
extended copy of eax

Bitwise Operations

and dst,src
dst <- dst & src

or dst,src

not dst
dst <- ~ dst
(logical or 1’s

l t)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-18

,
dst <- dst | src

xor dst,src
dst <- dst ^ src

complement)

CSE 401 Wi09 J-4

Shifts and Rotates
shl dst,count

dst shifted left count
bits

shr dst count

sar dst,count
dst <- dst shifted
right count bits (sign
bit fill)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-19

shr dst,count
dst <- dst shifted
right count bits (0
fill)

bit fill)
rol dst,count

dst <- dst rotated
left count bits

ror dst,count
dst <- dst rotated
right count bits

Load Effective Address

The unary & operator in C
lea dst,src ; dst <- address of src

dst must be a register

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-20

g
Address of src includes any address
arithmetic or indexing
Useful to capture addresses for pointers,
reference parameters, etc.
Also useful for computing arithmetic
expressions that match address arithmetic

Unconditional Jumps

jmp dst
eip <- address of dst

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-21

Conditional Jumps

Most arithmetic instructions set bits in eflags
to record information about the result (zero,
non-zero, positive, etc.)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-22

True of add, sub, and, or; but not imul or idiv

Other instructions that set eflags
cmp dst,src ; compare dst to src
test dst,src ; calculate dst & src (logical

; and); doesn’t change either

Conditional Jumps Following
Arithmetic Operations
jz label ; jump if result == 0
jnz label ; jump if result != 0
jg label ; jump if result > 0
jng label ; jump if result <= 0
jge label ; jump if result >= 0

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-23

jge label ; jump if result >= 0
jnge label ; jump if result < 0
jl label ; jump if result < 0
jnl label ; jump if result >= 0
jle label ; jump if result <= 0
jnle label ; jump if result > 0

Obviously, the assembler is providing multiple opcode
mnemonics for individual instructions

Compare and Jump
Conditionally

Want: compare two operands and jump
if a relationship holds between them
Would like to do this

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-24

jmpcond op1,op2,label
but can’t, because 3-address
instructions can’t be encoded in x86
(true of most other machines for that matter)

CSE 401 Wi09 J-5

cmp and jcc

Instead, use a 2-instruction sequence
cmp op1,op2
jcc label

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-25

jcc label

where jcc is a conditional jump that is
taken if the result of the comparison
matches the condition cc

Conditional Jumps Following
Arithmetic Operations
je label ; jump if op1 == op2
jne label ; jump if op1 != op2
jg label ; jump if op1 > op2
jng label ; jump if op1 <= op2
jge label ; jump if op1 >= op2

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-26

jge label ; jump if op1 >= op2
jnge label ; jump if op1 < op2
jl label ; jump if op1 < op2
jnl label ; jump if op1 >= op2
jle label ; jump if op1 <= op2
jnle label ; jump if op1 > op2

Again, the assembler is mapping more than one mnemonic to
some machine instructions

Function Call and Return

The x86 instruction set itself only provides for
transfer of control (jump) and return
Stack is used to capture return address and

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-27

recover it
Everything else – parameter passing, stack
frame organization, register usage – is a
matter of convention and not defined by the
hardware

call and ret Instructions

call label
Push address of next instruction and jump
esp <- esp – 4; memory[esp] <- eip

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-28

eip <- address of label

ret
Pop address from top of stack and jump
eip <- memory[esp]; esp <- esp + 4
WARNING! The word on the top of the stack had
better be an address, not some leftover data

Win 32 C Function Call
Conventions

Wintel code obeys the following
conventions for C programs

Note: calling conventions normally

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-29

designed very early in the instruction set/
basic software design. Hard (e.g., basically
impossible) to change later.

C++ augments these conventions to
handle the “this” pointer

Win32 C Register Conventions
These registers must be restored to their original
values before a function returns, if they are
altered during execution

esp, ebp, ebx, esi, edi
Traditional: push/pop from stack to save/restore

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-30

p /p p /
A function may use the other registers (eax, ecx,
edx) however it wants, without having to
save/restore them
A 32-bit function result is expected to be in eax
when the function returns
Generated code can get away with bending the
rules, but watch it when you call external C code

CSE 401 Wi09 J-6

Call Site

Caller is responsible for
Pushing arguments on the stack from right
to left (allows implementation of varargs)

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-31

(p g)
Execute call instruction
Pop arguments from stack after return

For us, this means add 4*(# arguments) to esp
after the return, since everything is either a 32-
bit variable (int, bool), or a reference (pointer)

Call Example

n = sumOf(17,42)
push 42 ; push args
push 17

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-32

push 17
call sumOf ; jump &

; push addr
add esp,8 ; pop args
mov [ebp+offsetn],eax ; store result

Callee

Called function must do the following
Save registers if necessary
Allocate stack frame for local variables

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-33

Execute function body
Ensure result of non-void function is in eax
Restore any required registers if necessary
Pop the stack frame
Return to caller

Win32 Function Prologue
The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologue
For a Win32 function f, it looks like this:

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-34

For a Win32 function f, it looks like this:
f: push ebp ; save old frame pointer

mov ebp,esp ; new frame ptr is top of
; stack after arguments and
; return address are pushed

sub esp,”# bytes needed”
; allocate stack frame

Win32 Function Epilogue
The epilogue is the code that is executed to obey a
return statement (or if execution “falls off” the
bottom of a void function)
For a Win32 function, it looks like this:

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-35

,
mov eax,”function result”

; put result in eax if not already
; there (if non-void function)

mov esp,ebp ; restore esp to old value
; before stack frame allocated

pop ebp ; restore ebp to caller’s value
ret ; return to caller

Example Function

Source code
int sumOf(int x, int y) {

int a int b;

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-36

int a, int b;
a = x;
b = a + y;
return b;

}

CSE 401 Wi09 J-7

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}Stack Frame for sumOf

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-37

Assembly Language Version
;; int sumOf(int x, int y) {
;; int a, int b;
sumOf:

push ebp ; prologue

;; b = a + y;
mov eax,[ebp-4]
add eax,[ebp+12]
mov [ebp-8],eax

2/22/2009 © 2002-09 Hal Perkins & UW CSE J-38

p p ; p g
mov ebp,esp
sub esp, 8

;; a = x;
mov eax,[ebp+8]
mov [ebp-4],eax

[p],

;; return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp
ret

;; }

