
CSE 401 Wi09 I2-1

CSE 401 – Compilers

2/8/2009 © 2002-09 Hal Perkins & UW CSE I2-1

Interpreting MiniJava
Hal Perkins
Winter 2009

We have…
…scanned and parsed and type checked and
built an abstract syntax tree with a symbol
table…
So we know we have

a correct program, and
we have a useful representation of that program

Now what?
Generate equivalent code in a lower-level
language … (so we can later run it)
Perform further analysis .. (such as?)
…what else?

CSE401 Wi09 2

We can execute it
immediately…

To do so, we need to implement a MiniJava-AST
computer interpreter

MiniJava AST

CSE401 Wi09 3

MiniJava
AST 401
computer

Program

Input to
MiniJava AST Program

Output of
MiniJava

AST Program

This is called
an interpreter

Fetch-Increment-Execute
≅

Read-Eval-Print

Why interpret vs. generate
code?

Time until program can be executed
Speed of executing program
Simplicity of implementationSimplicity of implementation
Flexibility of implementation

TRADEOFFS

Interpreters
Create data structures to represent run-time
program state

values manipulated by program
activation record (i e stack frame) for each calledactivation record (i.e., stack frame) for each called
method
environment to store local variable bindings
pointer to lexically-enclosing activation
record/environment (static link)
pointer to calling activation record (dynamic link)

EVAL loop executing AST nodes

An Interpreter for MiniJava:

The MiniJava project contains the
infrastructure to implement an
interpreter

We won’t use this code in the actual
project*, but it’s worth a look

*And interpreting could be an interesting project
extension later…

CSE 401 Wi09 I2-2

An Interpreter for MiniJava:
~readme (Evaluator subdirectory)

The main data structure is the environment,
which keeps track of the values of local variables
declared in a given scope, plus some information
about declarations in classes.
E i t closely parallel S b lT blEnvironments closely parallel SymbolTables

"compile-time" information computable before running
the program (e.g. declarations and types)
"run-time" information representing the program’s
running state

Only one symbol table for each program scope,
while there can be zero or more environments
created for (most) scopes

Continued… ~readme
There are environments for different kinds of
scopes (global scope, class scope, and code
scope…), as they have different declarations and
run-time state.

An activation record is an instance of an environmentAn activation record is an instance of an environment
The (only) global environment maps names of
classes to the corresponding class environments…
A class environment maps the names of locally
declared methods to their declarations and the
names of locally declared instance variables to
their resolved types. Also stores a reference to the
environment of its superclass (if any).

CSE401 Wi09 8

Continued ~readme
The values of the instance variables are not stored
in the class environment because each instance of
the class stores its own values of its instance
variables.
A code environment maps the names of localA code environment maps the names of local
variables to their current values.
A method code environment additionally
remembers the environment of its caller, for use in
printing stack traces during evaluation.
Each kind of nested environment stores a
reference to its lexically enclosing scope's
environment.

CSE401 Wi09 9

Continued ~readme
The evaluation values are represented by instances
of Value classes, organized into a class hierarchy
Each kind of ResolvedType (Int, Boolean,
Class, and Null) has a corresponding kind of
V l to use in representing valuesValue to use in representing values
Int and BooleanValues store their value
ClassValues store the environment for the
instantiated class as well as a table that maps
instance variable names to the current values for
that instance
NullValue represents null pointers.

CSE401 Wi09 10

Activation Records
Each call of a procedure allocates an activation
record that stores

mapping from names to Values, for each formal
and local variable in that scope (environment)
lexically enclosing activation record (static link)

An activation record for a method also stores
the calling activation record (dynamic link)
A class activation record also stores

methods (to support run-time method lookup)
instance variable declarations, not values
values stored in class instances (ClassValues)

Activation Records vs Symbol
Tables

For each method/nested block scope in a
program:

exactly one symbol table, storing types of names
possibly many activation records one perpossibly many activation records, one per
invocation, each storing values of names

For recursive procedures,
can have several activation records for same
procedure on stack simultaneously
All of these activation records have same “shape,”
described by single symbol table

CSE 401 Wi09 I2-3

Example

class Fac {
public int ComputeFac(int num) {

int numAux;
if (num < 1) {

numAux = 1;
} else {
numAux = num * this.ComputeFac(num-1);

}
return numAux;
}

}

Interpretation tradeoffs:
reprise

simple conceptually, easy to implement
fast turnaround time
good programming environments
easy to support fancy language features

slow to execute
data structure for value vs. direct value
variable lookup vs. registers or direct access
EVAL overhead vs. direct machine instructions
no optimizations across AST nodes

Compile-time vs Run-time
Compile-time Run-time

Procedure Activation record/stack
frame

Scope, symbol table Environment (contents
of stack frame)

Variable Memory location or
register

Lexically-enclosing
scope

Static link

Calling Procedure Dynamic link

