Agenda

- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
 - Left recursion removal
 - Factoring
Basic Parsing Strategies (1)

- Bottom-up
 - Build up tree from leaves
 - Shift next input or reduce a handle
 - Accept when all input read and reduced to start symbol of the grammar
 - LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
Basic Parsing Strategies (2)

- **Top-Down**
 - Begin at root with start symbol of grammar
 - Repeatedly pick a non-terminal and expand
 - Success when expanded tree matches input
 - LL(k)
Top-Down Parsing

- Situation: have completed part of a derivation
 \[S =>* wA_\alpha =>* wxy \]

- Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \ldots \beta_n \]
 that will properly expand \(A \)
 to match the input
 - Want this to be deterministic
Predictive Parsing

- If we are located at some non-terminal A, and there are two or more possible productions

 $A ::= \alpha$

 $A ::= \beta$

 we want to make the correct choice by looking at just the next input symbol

- If we can do this, we can build a **predictive parser** that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

\[stmt ::= id = exp ; \mid return exp ; \mid if (exp) stmt \mid while (exp) stmt \]

If the next part of the input begins with the tokens

\[IF \text{ LPAREN } ID(x) \ldots \]

we should expand \(stmt \) to an if-statement
LL(k) Property

- A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is the case that $\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$

- If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead
LL(k) Parsers

- An LL(k) parser
 - Scans the input Left to right
 - Constructs a Leftmost derivation
 - Looking ahead at most k symbols
- 1-symbol lookahead is enough for many practical programming language grammars
 - LL(k) for k>1 is very rare in practice
Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar

Example
1. $S ::= (S) S$
2. $S ::= [S] S$
3. $S ::= \varepsilon$

Table

<table>
<thead>
<tr>
<th></th>
<th>()</th>
<th>[]</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Table-driven parsers for both LL and LR can be automatically generated by tools.

- **LL(1)** has to make a decision based on a single non-terminal and the next input symbol.
- **LR(1)** can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol.
LL vs LR (2)

- \(\implies\) LR(1) is more powerful than LL(1)
 - Includes a larger set of grammars
- \(\implies\) (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 - But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for non-LLvsLR reasons
Recursive-Descent Parsers

- An advantage of top-down parsing is that it is easy to implement by hand.
- Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar.
 - Each of these functions is responsible for matching its non-terminal with the next part of the input.
Example: Statements

- Grammar

 \[stmt ::= id = exp ; \]

 \[| return exp ; \]

 \[| if (exp) stmt \]

 \[| while (exp) stmt \]

- Method for this grammar rule

 // parse stmt ::= id=exp; | ...

 void stmt() {
 switch(nextToken) {
 RETURN: returnStmt(); break;
 IF: ifStmt(); break;
 WHILE: whileStmt(); break;
 ID: assignStmt(); break;
 }
 }
Example (cont)

// parse while (exp) stmt
void whileStmt() {
 // skip "while ("
 getNextToken();
 getNextToken();

 // parse condition
 exp();

 // skip ")
 getNextToken();

 // parse stmt
 stmt();
}

// parse return exp ;
void returnStmt() {
 // skip "return"
 getNextToken();

 // parse expression
 exp();

 // skip ";
 getNextToken();
}
Invariant for Functions

- The parser functions need to agree on where they are in the input
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
 - Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

- Two common problems for recursive-descent (and LL(1)) parsers
 - Left recursion (e.g., $E ::= E + T \mid ...$)
 - Common prefixes on the right hand side of productions
Left Recursion Problem

- Grammar rule
 \[expr ::= expr + term \]
 \| \ term \]

- Code
  ```
  // parse expr ::= ...
  void expr() {
    expr();
    if (current token is PLUS) {
      getNextToken();
      term();
    }
  }
  ```

- And the bug is?????
Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a right-recursive rule

\[expr ::= \text{term} + expr \mid \text{term} \]

- Why isn’t this the right thing to do?
Left Recursion Solution

- Rewrite using right recursion and a new non-terminal
- Original: \(expr ::= expr + term | term \)
- New
 \[
 expr ::= term exprtail \\
 exprtail ::= + term exprtail | \epsilon
 \]
- Properties
 - No infinite recursion if coded up directly
 - Maintains left associatively (required)
Another Way to Look at This

- Observe that

\[
expr ::= expr + \text{term} \mid \text{term}
\]

generates the sequence

\[
\text{term} + \text{term} + \text{term} + \ldots + \text{term}
\]

- We can sugar the original rule to reflect this

\[
expr ::= \text{term} \{ + \text{term} \}^
\]

- This leads directly to parser code
Code for Expressions (1)

```c
// parse
//    expr ::=  term { + term }*
void expr() {
    term();
    while (next symbol is PLUS) {
        getNextToken();
        term();
    }
}

// parse
//    term ::= factor { * factor }*
void term() {
    factor();
    while (next symbol is TIMES) {
        getNextToken();
        factor();
    }
}
```
Code for Expressions (2)

// parse
// factor ::= int | id | (expr)
void factor() {

 switch(nextToken) {

 case ID:
 process identifier;
 getNextToken();
 break;

 case LPAREN:
 getNextToken();
 expr();
 getNextToken();
 break;

 ...

 }

}
What About Indirect Left Recursion?

- A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A\gamma \]
- There are systematic ways to factor such grammars
 - See any good compiler book
Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use

- Solution: Factor the common prefix into a separate production
Left Factoring Example

- Original grammar

 \[
 \text{ifStmt} ::= \text{if} (\ expr \) \ stmt \\
 \quad | \ \text{if} (\ expr \) \ stmt \ \text{else} \ stmt
 \]

- Factored grammar

 \[
 \text{ifStmt} ::= \text{if} (\ expr \) \ stmt \ \text{ifTail} \\
 \quad \text{ifTail} ::= \text{else} \ stmt \ | \ \varepsilon
 \]
Parsing if Statements

- But it’s easiest to just code up the “else matches closest if” rule directly

```c
void ifStmt() {
    getNextToken();
    expr();
    getNextToken();
    stmt();
    if (next symbol is ELSE) {
        getNextToken();
        stmt();
    }
}
```
Another Lookahead Problem

- In languages like FORTRAN, parentheses are used for array subscripts.
- A FORTRAN grammar includes something like:
 \[
 \text{factor ::= id(subscripts) | id(arguments) | ...}
 \]
- When the parser sees \textit{“id(“}, how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle $id(\ ?)$

- Use the type of id to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar

 $factor ::= id(\ commaSeparatedList) | \ldots$

 and fix/check later when more information is available (e.g., types)
Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs.
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice.
Parsing Concluded

- That’s it!
- On to the rest of the compiler
- Coming attractions
 - Intermediate representations (ASTs etc.)
 - Semantic analysis (including type checking)
 - Symbol tables
 - & more...