
CSE 401 Wi09 F-1

CSE 401 – Compilers

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-1

LL and Recursive-Descent Parsing
Hal Perkins
Winter 2009

Agenda

Top-Down Parsing
Predictive Parsers
LL(k) Grammars

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-2

LL(k) Grammars
Recursive Descent
Grammar Hacking

Left recursion removal
Factoring

Basic Parsing Strategies (1)

Bottom-up
Build up tree from leaves

Shift next input or reduce a handle

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-3

Shift next input or reduce a handle
Accept when all input read and reduced to start
symbol of the grammar

LR(k) and subsets (SLR(k), LALR(k), …)

remaining input

Basic Parsing Strategies (2)

Top-Down
Begin at root with start symbol of grammar
Repeatedly pick a non-terminal and expand

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-4

Success when expanded tree matches input
LL(k)

A

Top-Down Parsing
Situation: have completed part of a derivation

S =>* wAα =>* wxy

Basic Step: Pick some production
A :: β β β

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-5

A ::= β1 β2 … βn

that will properly expand A
to match the input

Want this to be
deterministic A

Predictive Parsing
If we are located at some non-terminal A,
and there are two or more possible
productions

A ::= α

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-6

A ::= β
we want to make the correct choice by
looking at just the next input symbol
If we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

CSE 401 Wi09 F-2

Example
Programming language grammars are often
suitable for predictive parsing
Typical example

t t id | t

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-7

stmt ::= id = exp ; | return exp ;
| if (exp) stmt | while (exp) stmt

If the next part of the input begins with the
tokens

IF LPAREN ID(x) …

we should expand stmt to an if-statement

LL(k) Property

A grammar has the LL(1) property if,
for all non-terminals A, if productions
A ::= α and A ::= β both appear in the

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-8

A :: α and A :: β both appear in the
grammar, then it is the case that

FIRST(α) FIRST(β) = Ø
If a grammar has the LL(1) property,
we can build a predictive parser for it
that uses 1-symbol lookahead

I

LL(k) Parsers

An LL(k) parser
Scans the input Left to right
Constructs a Leftmost derivation

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-9

Looking ahead at most k symbols
1-symbol lookahead is enough for
many practical programming language
grammars

LL(k) for k>1 is very rare in practice

Table-Driven LL(k) Parsers

As with LR(k), a table-driven parser can be
constructed from the grammar
Example

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-10

1. S ::= (S) S
2. S ::= [S] S
3. S ::= ε

Table
() [] $

S 1 3 2 3 3

LL vs LR (1)

Table-driven parsers for both LL and LR
can be automatically generated by tools
LL(1) has to make a decision based on

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-11

()
a single non-terminal and the next input
symbol
LR(1) can base the decision on the
entire left context (i.e., contents of the
stack) as well as the next input symbol

LL vs LR (2)

∴ LR(1) is more powerful than LL(1)
Includes a larger set of grammars

∴ (editorial opinion) If you’re going to

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-12

∴ (editorial opinion) If you re going to
use a tool-generated parser, might as
well use LR

But there are some very good LL parser
tools out there (ANTLR, JavaCC, …) that
might win for non-LLvsLR reasons

CSE 401 Wi09 F-3

Recursive-Descent Parsers

An advantage of top-down parsing is
that it is easy to implement by hand
Key idea: write a function (procedure

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-13

Key idea: write a function (procedure,
method) corresponding to each non-
terminal in the grammar

Each of these functions is responsible for
matching its non-terminal with the next
part of the input

Example: Statements
Grammar

stmt ::= id = exp ;
| return exp ;
| if (exp) stmt
| while (exp) stmt

Method for this grammar rule
// parse stmt ::= id=exp; | …
void stmt() {
switch(nextToken) {

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-14

| while (exp) stmt
RETURN: returnStmt(); break;
IF: ifStmt(); break;
WHILE: whileStmt(); break;
ID: assignStmt(); break;

}
}

Example (cont)
// parse while (exp) stmt
void whileStmt() {

// skip “while (”
getNextToken();
getNextToken();

// parse return exp ;
void returnStmt() {

// skip “return”
getNextToken();

// parse expression

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-15

// parse condition
exp();

// skip “)”
getNextToken();

// parse stmt
stmt();

}

// parse expression
exp();

// skip “;”
getNextToken();

}

Invariant for Functions

The parser functions need to agree on where
they are in the input
Useful invariant: When a parser function is

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-16

called, the current token (next unprocessed
piece of the input) is the token that begins
the expanded non-terminal being parsed

Corollary: when a parser function is done, it must
have completely consumed input correspond to
that non-terminal

Possible Problems

Two common problems for recursive-
descent (and LL(1)) parsers

Left recursion (e.g., E ::= E + T |)

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-17

Left recursion (e.g., E :: E + T | …)
Common prefixes on the right hand side of
productions

Left Recursion Problem
Grammar rule

expr ::= expr + term
| term

Code
// parse expr ::= …
void expr() {

expr();

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-18

And the bug is????

expr();
if (current token is

PLUS) {
getNextToken();
term();

}
}

CSE 401 Wi09 F-4

Left Recursion Problem

If we code up a left-recursive rule as-is,
we get an infinite recursion
Non-solution: replace with a right-

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-19

Non-solution: replace with a right-
recursive rule

expr ::= term + expr | term
Why isn’t this the right thing to do?

Left Recursion Solution
Rewrite using right recursion and a new non-
terminal
Original: expr ::= expr + term | term

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-20

New
expr ::= term exprtail
exprtail ::= + term exprtail | ε

Properties
No infinite recursion if coded up directly
Maintains left associatively (required)

Another Way to Look at This

Observe that
expr ::= expr + term | term

generates the sequence

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-21

ge e ates t e seque ce
term + term + term + … + term

We can sugar the original rule to reflect
this

expr ::= term { + term }*
This leads directly to parser code

Code for Expressions (1)
// parse
// expr ::= term { + term }*
void expr() {

term();
while (next symbol is PLUS) {

// parse
// term ::= factor { * factor }*
void term() {

factor();

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-22

while (next symbol is PLUS) {
getNextToken();
term()

}
}

while (next symbol is TIMES) {
getNextToken();
factor()

}
}

Code for Expressions (2)
// parse
// factor ::= int | id | (expr)
void factor() {

switch(nextToken) {

case ID:
process identifier;
getNextToken();

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-23

switch(nextToken) {

case INT:
process int constant;
getNextToken();
break;

…

break;
case LPAREN:

getNextToken();
expr();
getNextToken();

}
}

What About Indirect Left
Recursion?

A grammar might have a derivation that
leads to a left recursion

A => β1 =>* β => A γ

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-24

A > β1 > βn > A γ
There are systematic ways to factor
such grammars

See any good compiler book

CSE 401 Wi09 F-5

Left Factoring

If two rules for a non-terminal have
right hand sides that begin with the
same symbol, we can’t predict which

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-25

same symbol, we can t predict which
one to use
Solution: Factor the common prefix into
a separate production

Left Factoring Example

Original grammar
ifStmt ::= if (expr) stmt

| if (expr) stmt else stmt

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-26

| if (expr) stmt else stmt
Factored grammar

ifStmt ::= if (expr) stmt ifTail
ifTail ::= else stmt | ε

Parsing if Statements
But it’s easiest to just
code up the “else
matches closest if”
rule directly

// parse
// if (expr) stmt [else stmt]
void ifStmt() {

getNextToken();
getNextToken();

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-27

getNextToken();
expr();
getNextToken();
stmt();
if (next symbol is ELSE) {

getNextToken();
stmt();

}
}

Another Lookahead Problem

In languages like FORTRAN, parentheses are
used for array subscripts
A FORTRAN grammar includes something like

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-28

g g
factor ::= id (subscripts) | id (arguments) | …

When the parser sees “id (”, how can it
decide whether this begins an array element
reference or a function call?

Two Ways to Handle id (?)

Use the type of id to decide
Requires declare-before-use restriction if
we want to parse in 1 pass

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-29

p p

Use a covering grammar
factor ::= id (commaSeparatedList) | …

and fix/check later when more
information is available (e.g., types)

Top-Down Parsing Concluded

Works with a smaller set of grammars
than bottom-up, but can be done for
most sensible programming language

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-30

most sensible programming language
constructs
If you need to write a quick-n-dirty
parser, recursive descent is often the
method of choice

CSE 401 Wi09 F-6

Parsing Concluded

That’s it!
On to the rest of the compiler
Coming attractions

1/28/2009 © 2002-09 Hal Perkins & UW CSE F-31

Coming attractions
Intermediate representations (ASTs etc.)
Semantic analysis (including type checking)
Symbol tables
& more…

