!'_ CSE 401 — Compilers

MiniJava Parser and AST
Hal Perkins
Winter 2009

1/27/2009 © 2002-09 Hal Perkins & UW CSE El-1

i Abstract Syntax Trees

= The parser’s output is an abstract syntax tree
(AST) representing the grammatical structure
of the parsed input

= ASTs represent only semantically meaningful
aspects of input program, unlike concrete
syntax trees which record the complete textual
form of the input

= There’s no need to record keywords or
punctuation like (), ;, else

= The rest of compiler only cares about the abstract
structure

1/27/2009 © 2002-09 Hal Perkins & UW CSE E1-2

MiniJava AST Node Classes

Each node in an AST Is an instance of an AST class
= ITStmt, AssignStmt, AddExpr, VarDecl, etc.

Each AST class declares its own instance variables
holding its AST subtrees
= ITStmt has testExpr, thenStmt, and elseStmt
= AssignStmt has ThsVar and rhsexpr
= AddExpr has arglExpr and arg2Expr
= VarDecl has typeExpr and varName

CSE401 Wi09

AST Class Hierarchy

= AST classes are organized into an inheritance
hierarchy based on commonalities of meaning and
structure

= Each "abstract non-terminal” that has multiple
alternative concrete forms will have an abstract class
that’s the superclass of the various alternative forms
= Stmt is abstract superclass of 1fStmt, AssignStmt, etc.
= EXpr is abstract superclass of AddExpr, VarExpr, etc.
= Type is abstract superclass of IntType, ClassType, etc.

CSE401 Wi09

AST Extensions For Project

= New variable = New expressions:
declarations: DoubleLiteralE
= StaticVarDecl = DoubleLiteralexpr
= New types: = Orkxpr
= DoubleType = ArrayLookupExpr
= ArrayType = ArrayLengthExpr
= New/changed = ArrayNewExpr
statements:
= IfStmt can omit else
branch
= ForStmt

= BreakStmt
= ArrayAssignStmt

CSE401 Wi09

Automatic Parser Generation
INn MiniJava

= We use the CUP tool to automatically create a parser from
a specification file, Parser/minijava.cup

= The MiniJava Makefile automatically rebuilds the parser
whenever its specification file changes
= A CUP file has several sections:
= Introductory declarations included with the generated parser

= declarations of the terminals and nonterminals with their
types

= The AST node or other value returned when finished parsing
that nonterminal or terminal

= precedence declarations
= productions + actions

CSE401 Wi09 6

i Terminal Declarations

x Terminal declarations we saw before:

CSE401 Wi09

/* reserved words: */

terminal CLASS, PUBLIC, STATIC,
EXTENDS;

/* tokens with values: */
terminal String IDENTIFIER;
terminal Integer INT_LITERAL;

i Nonterminal Declarations

= Nonterminals are similar:

CSE401 Wi09

nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal

Program Program;
MainClassDecl MainClassDecl;
List/*<...>*/ ClassDecls;
RegularClassDecl ClassDecl;

List/*<Stmt>*/ Stmts;
Stmt Stmt;

List/*<Expr>*/ EXprs;
List/*<Expr>*/ MoreExprs;
EXpr EXpr;

String ldentifier;

i Java Generics and MiniJava

= CUP did not support Java generics when the
MiniJava starter code was written, so there are
some hacks

= An example: we’d like to write
nonterminal LiIsSt<EXpr> EXprs;

but instead the code has
nonterminal List/*<Expr>*/ EXprs;

s There are other hacks. Deal with them as
gracefully as you can

= Don’t make pointless changes to the code — save
your energy for more interesting things

1/27/2009 © 2002-09 Hal Perkins & UW CSE E1-9

i Precedence Declarations

= Can specify precedence and associativity of operators
= equal precedence in a single declaration
= lowest precedence textually first
= specify left, right, or nonassoc with each declaration

= Examples:
precedence
precedence
precedence

precedence
precedence
precedence
precedence

CSE401 Wi09

left AND AND;
nonassoc EQUALS EQUALS, EXCLAIM_EQUALS;

left LESSTHAN, LESSEQUAL,
GREATEREQUAL, GREATERTHAN;

left PLUS, MINUS;
left STAR, SLASH;
left EXCLAIM;
left PERIOD;

10

i Productions

s All of the form:

LHS :-:= RHS1 {: Java code 1 :-}
| RHS2 {: Java code 2 :}

| --.
| RHSn {: Java code n :};

= Can label symbols in RHS with -var

suffix to refer to its result value in Java

code

« Varleft s set to line in input where var
symbol was

CSE401 Wi09

11

Productions (cont.)

= Example
EXpr :-:= EXxpr:argl PLUS Expr:arg2
{: RESULT = new AddExpr(argl, arg2,
arglleft);:}
| INT_LITERAL:value{: RESULT = new

IntLiteralExpr(
value.intValue(),valueleft);:}

| ExXpr:rcvr PERIOD ldentifier:message
OPEN_PAREN EXxprs:-args CLOSE_PAREN

{: RESULT = new MethodCal lExpr(
rcvr,message,args,rcvrileft);:}

CSE401 Wi09 12

i Error Handling

= How to handle syntax error?

= Option 1: quit complilation
+ easy
- Inconvenient for programmer

= Option 2: error recovery

+ try to catch as many errors as possible on one
compile
- difficult to avoid streams of spurious errors
= Option 3: error correction

+ fix syntax errors as part of compilation
- hard!!

CSE401 Wi09

13

Panic Mode Error Recovery

= When finding a syntax error, skip tokens until
reaching a “landmark”

= landmarks in MiniJava: ;,), }
= FOLLOW sets can be a useful source of “landmarks”

= once a landmark is found, hope to have gotten back on
track

= In top-down parser, maintain set of landmark
tokens as recursive descent proceeds
= landmarks selected from terminals later in production

= as parsing proceeds, set of landmarks will change,
depending on the parsing context

CSE401 Wi09 14

i Panic Mode Error Recovery

= In bottom-up parser, can add special error
nonterminals, followed by landmarks

= If syntax error, then will skip tokens till seeing
landmark, then reduce and continue normally

m Eg
Stmt -:= | error ; | { error }
EXpr :-:= | (error)

CSE401 Wi09 15

i EBNF Syntax of initial MiniJava

Program
MaitnClassDecl
ClassDecl
ClassVarbDecl

MethodDecl

Formal
Type

CSE401 Wi09

= MainClassDecl { ClassDecl }

class ID {

public static void main
(String [] ID) { { Stmt } }
class ID [extends ID] {

{ ClassVarDecl } { MethodDecl } }
Type 1D ;

public Type ID

([Formal { , Formal }])

{ { Stmt } return Expr ; }
Type 1D

int |boolean | ID

16

i Initial miniJava [continued]

Stmt -:= Type ID ;

| { {Stmt} }
| 1f (Expr) Stmt else Stmt
| while (Expr) Stmt
| System.out.println (Expr) ;
| ID = Expr ;
Expr ::= ExXpr Op Expr
| ' Expr
| Expr . IDC [Expr { , Expr } 1)
| ID | this
| Integer | true | false
| (Expr)
Op =+ -1>*17
| <l <=l>1>]=11"=] &

CSE401 Wi09

17

