LR Parsing
Hal Perkins
Winter 2009
Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts
LR(1) Parsing

- We’ll look at LR(1) parsers
 - Left to right scan, Rightmost derivation, 1 symbol lookahead
 - Almost all practical programming languages have an LR(1) grammar
 - LALR(1), SLR(1), etc. – subsets of LR(1)
 - LALR(1) can parse most real languages, is more compact, and is used by YACC/Bison/CUP/etc.
Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the *frontier*
Example

Grammar

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]

Bottom-up Parse

```
a  b  b  c  d  e
```
Details

- The bottom-up parser reconstructs a reverse rightmost derivation

- Given the rightmost derivation
 \[S => \beta_1 => \beta_2 => \ldots => \beta_{n-2} => \beta_{n-1} => \beta_n = w \]
 the parser will first discover \(\beta_{n-1} => \beta_n \), then \(\beta_{n-2} => \beta_{n-1} \), etc.

- Parsing terminates when
 - \(\beta_1 \) reduced to \(S \) (start symbol, success), or
 - No match can be found (syntax error)
How Do We Parse with This?

- Key: given what we’ve already seen and the next input symbol, decide what to do.
- Choices:
 - Perform a reduction
 - Look ahead further
- Can reduce \(A \rightarrow \beta \) if both of these hold:
 - \(A \rightarrow \beta \) is a valid production
 - \(A \rightarrow \beta \) is a step in this rightmost derivation
- This is known as a *shift-reduce* parser
Sentential Forms

- If $S \Rightarrow^* \alpha$, the string α is called a sentential form of the grammar.
- In the derivation $S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w$, each of the β_i are sentential forms.
- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential).
Handles

- Informally, a substring of the tree frontier that matches the right side of a production

- Even if $A::=\beta$ is a production, β is a handle only if it matches the frontier at a point where $A::=\beta$ was used in that derivation

- β may appear in many other places in the frontier without being a handle for that particular production
Handles (cont.)

Formally, a *handle* of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ.
Handle Examples

In the derivation

\[S \Rightarrow aABe \Rightarrow aAde \Rightarrow aAbcde \Rightarrow abbcde \]

- abbcde is a right sentential form whose handle is \(A::=b \) at position 2

- \(aAbcde \) is a right sentential form whose handle is \(A::=Abc \) at position 4
 - Note: some books take the left of the match as the position
Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input
Shift-Reduce Parser

Operations

- **Reduce** – if the top of the stack is the right side of a handle \(A::=\beta \), pop the right side \(\beta \) and push the left side \(A \).

- **Shift** – push the next input symbol onto the stack

- **Accept** – announce success

- **Error** – syntax error discovered
Shift-Reduce Example

\[
S ::= aABe
\]

\[
A ::= Abc \mid b
\]

\[
B ::= d
\]

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
<td>shift</td>
</tr>
</tbody>
</table>
How Do We Automate This?

- Def. **Viable prefix** – a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form

- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them
DFA for prefixes of

\[S ::= aA\beta e \]
\[A ::= A bc \mid b \]
\[B ::= d \]
Trace

Stack
$

Input
abbcde$

$S ::= aABe$
$A ::= Abc | b$
$B ::= d$

Diagram:

- Start at node 1 (start)
- Read input $abbcde$
- Move through nodes 2 (A), 3 (A), 4 (A), 5 (B), 6 (A), 7 (A), 8 (S), 9 (accept)
- Transition rules:
 - $A ::= Abc$
 - $B ::= d$
 - $S ::= aABe$

Diagram details:

1. Node 1 (start) with input $\$
2. Node 2 (A) with transition a to node 3
3. Node 3 (A) with transition b to node 4
4. Node 4 (A) with transition b to node 5
5. Node 5 (B) with transition d to node 6
6. Node 6 (A) with transition c to node 7
7. Node 7 (A) with transition e to node 8
8. Node 8 (S) with transition B to node 9
9. Node 9 (accept)
Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We’ll defer construction details for now
Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top.
 - \(\therefore \) Scanning the stack will take us through the same transitions as before until the last one.
 - \(\therefore \) If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack.
Stack

- Change the stack to contain pairs of states and symbols from the grammar

 \[s_0 \ X_1 \ s_1 \ X_2 \ s_2 \ \ldots \ X_n \ s_n \]

- State \(s_0 \) represents the accept state

 (Not always added – depends on particular presentation)

- Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations, it’s clearer to use both.
Encoding the DFA in a Table

- A shift-reduce parser’s DFA can be encoded in two tables
 - One row for each state
 - *action* table encodes what to do given the current state and the next input symbol
 - *goto* table encodes the transitions to take after a reduction
Actions (1)

- Given the current state and input symbol, the main possible actions are
 - s/i – shift the input symbol and state i onto the stack (i.e., shift and move to state i)
 - r/j – reduce using grammar production j
 - The production number tells us how many $<\text{symbol, state}>$ pairs to pop off the stack
Actions (2)

- Other possible *action* table entries
 - *accept*
 - blank – no transition – syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens
When a reduction is performed, \(<\text{symbol}, \text{state}\>\) pairs are popped from the stack revealing a state \(uncovered_s\) on the top of the stack.

goto[\(uncovered_s, A\)] is the new state to push on the stack when reducing production \(A ::= \beta\) (after popping \(\beta\) and finding state \(uncovered_s\) on top).
Reminder: DFA for

\[
S ::= aABe \\
A ::= Abc | b \\
B ::= d
\]
LR Parse Table for

1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

<table>
<thead>
<tr>
<th>State</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>s5</td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>
LR Parsing Algorithm (1)

```java
word = scanner.getToken();
while (true) {
    s = top of stack;
    if (action[s, word] = si) {
        push word; push i (state);
        word = scanner.getToken();
    } else if (action[s, word] = rj) {
        pop 2 * length of right side of production j (2*|β|);
        uncovered_s = top of stack;
        push left side A of production j;
        push state goto[uncovered_s, A];
    } else if (action[s, word] = accept ) {
        return;
    } else {
        // no entry in action table
        report syntax error;
        halt or attempt recovery;
    }
}
```
1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
</tr>
</tbody>
</table>

| | $| a | b | c | d | e | $ | A | B | S |
|---|---|---|---|---|---|---|---|---|---|
| 1 | s2| | | | | | ac| | g1|
| 2 | | | | | | | s4| | g3|
| 3 | | | | | | | s6| s5 | g8|
| 4 | | | | | | | r3|r3 | |
| 5 | | | | | | | r4|r4 | |
| 6 | | | | | | | s7| | |
| 7 | | | | | | | r2|r2 | |
| 8 | | | | | | | | s9 | |
| 9 | | | | | | | r1|r1 | |

1/12/2009 © 2002-09 Hal Perkins & UW CSE D-28
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - Where we are in the right hand side of each of those productions
An *item* is a production with a dot in the right hand side.

Example: Items for production $A ::= XY$

- $A ::= XY$
- $A ::= X.Y$
- $A ::= X.Y$
- $A ::= XY$.

Idea: The dot represents a position in the production.
S ::= aABe
A ::= Abc | b
B ::= d

DFA for

1. $S ::= .aABe$
 - Transition on a
 - State: $S ::= a.ABe$
 - Transition on b
 - State: $A ::= b.$

2. $S ::= a.ABe$
 - Transition on a
 - State: $S ::= a.ABe$

3. $S ::= a.ABe$
 - Transition on A
 - State: $A ::= A.bc$
 - Transition on B
 - State: $B ::= d.$

4. $A ::= b.$

5. $B ::= d.$

6. $A ::= Ab.c$
 - Transition on c
 - State: $A ::= Abc.$

7. $A ::= Abc.$

8. $S ::= aAB.e$
 - Transition on e
 - State: $S ::= aABe.$

9. $S ::= aABe.$
Problems with Grammars

- Grammars can cause problems when constructing a LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts
Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)

- Classic example: if-else statement

\[
S ::= \text{ifthen } S \mid \text{ifthen } S \text{ else } S
\]
Parser States for

1. $S ::= \text{ifthen } S$
2. $S ::= \text{ifthen } S \text{ else } S$

- **State 3** has a shift-reduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)

 $S ::= \text{ifthen } S$

(Note: other $S ::= \text{ifthen}$ items not included in states 2-4 to save space)
Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a “longest match” rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want
Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state

- Contrived example

 \[
 S ::= A \\
 S ::= B \\
 A ::= x \\
 B ::= x
 \]
1. $S ::= A$
2. $S ::= B$
3. $A ::= x$
4. $B ::= x$

- State 2 has a reduce-reduce conflict (r3, r4)
Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.

- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states (LR(1) instead of SLR(1) for example)
 - Most practical tools use this information
 - Fix the grammar
Another Reduce-Reduce Conflict

- Suppose the grammar separates arithmetic and boolean expressions

\[
expr ::= aexp | bexp \\
aexp ::= aexp * aident | aident \\
bexp ::= bexp && bident | bident \\
aident ::= id \\
bident ::= id
\]

- This will create a reduce-reduce conflict
Covering Grammars

- A solution is to merge \texttt{aident} and \texttt{bident} into a single non-terminal (or use \texttt{id} in place of \texttt{aident} and \texttt{bident} everywhere they appear)

- This is a \textit{covering grammar}
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later
Coming Attractions

- Constructing LR tables
 - We’ll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 3