
CSE 401 – CompilersCSE 401 Compilers

Parsing & Context-Free Grammars
Hal PerkinsHal Perkins
Winter 2009

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-1

Agenda for Today

Parsing overview
Context free grammarsContext free grammars
Ambiguous grammars

dReading: Cooper & Torczon 3.1-3.2

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-2

Syntactic Analysis / Parsing
Goal: Convert token stream to abstract syntax
tree
Ab (AST)Abstract syntax tree (AST):

Captures the structural features of the program
Primary data structure for remainder ofPrimary data structure for remainder of
compilation

Three Part Plan
Study how context-free grammars specify syntax
Study algorithms for parsing / building ASTs
Study the miniJava ImplementationStudy the miniJava Implementation

Context-free Grammars
The syntax of most programming languages can be
specified by a context-free grammar (CGF)
Compromise between

REs, can’t nest or specify recursive structure
General grammars, too powerful, undecidable

Context-free grammars are a sweet spot
Powerful enough to describe nesting, recursion
Easy to parse; but also allow restrictions for speed

Not perfect
C i i “ i bl bCannot capture semantics, as in, “variable must be
declared,” requiring later semantic pass
Can be ambiguous

EBNF Extended Backus Naur Form is popular notationEBNF, Extended Backus Naur Form, is popular notation

Derivations and Parse Trees
Derivation: a sequence of expansion steps,
beginning with a start symbol and leading
to a sequence of terminalsto a sequence of terminals
Parsing: inverse of derivation

Given a sequence of terminals (a\k\a tokens)Given a sequence of terminals (a\k\a tokens)
want to recover the nonterminals representing
structure

Can represent derivation as a parse tree,
that is, the concrete syntax tree, y

Example
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmtG

Derivation
ifStmt :: if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G

program

a = 1 ; if (a + 1) b = 2 ;w

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-6

a = 1 ; if (a + 1) b = 2 ;w

Parsing

Parsing: Given a grammar G and a sentence
w in L(G), traverse the derivation (parse
tree) for w in some standard order and do
something useful at each node

h h b d d l l b hThe tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-7

“Standard Order”

For practical reasons we want the
parser to be deterministic (noparser to be deterministic (no
backtracking), and we want to examine
the source program from left to right.the source program from left to right.

(i.e., parse the program in linear time in
the order it appears in the source file)pp)

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-8

Common Orderings

Top-down
Start with the root
Traverse the parse tree depth-first, left-to-right
(leftmost derivation)
LL(k)LL(k)

Bottom-up
Start at leaves and build up to the rootStart at leaves and build up to the root

Effectively a rightmost derivation in reverse(!)

LR(k) and subsets (LALR(k), SLR(k), etc.)

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-9

() ((), (),)

“Something Useful”
At each point (node) in the traversal, perform
some semantic action

C t t d f f ll t ()Construct nodes of full parse tree (rare)
Construct abstract syntax tree (common)
Construct linear, lower-level representation (moreConstruct linear, lower level representation (more
common in later parts of a modern compiler)
Generate target code on the fly (1-pass compiler;
not common in production compilers can’tnot common in production compilers – can t
generate very good code in one pass – but great if
you need a quick ‘n dirty working compiler)

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-10

Context-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S>
where

N a finite set of non-terminal symbols
Σ a finite set of terminal symbols
P a finite set of productions

A subset of N × (N ∪ Σ)*

S the start symbol a distinguished element of NS the start symbol, a distinguished element of N
If not specified otherwise, this is usually assumed to be
the non-terminal on the left of the first production

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-11

Standard Notations

a, b, c elements of Σ
w x y z elements of Σ*w, x, y, z elements of Σ
A, B, C elements of N

l fX, Y, Z elements of N Σ
α, β, γ elements of (N Σ)*

∪
∪

A α or A ::= α if <A, α> in P

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-12

Derivation Relations (1)

α A γ => α β γ iff A ::= β in P
derivesderives

A =>* w if there is a chain of
productions starting with A thatproductions starting with A that
generates w

transitive closuretransitive closure

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-13

Derivation Relations (2)

w A γ =>lm w β γ iff A ::= β in P
derives leftmostderives leftmost

α A w =>rm α β w iff A ::= β in P
derives rightmostderives rightmost

We will only be interested in leftmost
d i ht t d i ti t dand rightmost derivations – not random

orderings

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-14

Languages

For A in N, L(A) = { w | A =>* w }
If S is the start symbol of grammar GIf S is the start symbol of grammar G,
define L(G) = L(S)

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-15

Reduced Grammars

Grammar G is reduced iff for every
production A ::= α in G there is aproduction A :: α in G there is a
derivation

S =>* x A z => x α z =>* xyzS => x A z => x α z => xyz
i.e., no production is useless

C ti ill l d dConvention: we will use only reduced
grammars

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-16

Ambiguity
Grammar G is unambiguous iff every w in
L(G) has a unique leftmost (or rightmost)
d i tiderivation

Fact: unique leftmost or unique rightmost implies
the other

A grammar without this property is
ambiguous

Note that other grammars that generate the same
language may be unambiguous

We need unambiguous grammars for parsing

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-17

We need unambiguous grammars for parsing

Example: Ambiguous Grammar p g
for Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int| expr expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Exercise: show that this is ambiguousExercise: show that this is ambiguous

How? Show two different leftmost or
rightmost derivations for the same stringrightmost derivations for the same string
Equivalently: show two different parse
trees for the same string

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-18

trees for the same string

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example (cont)
| | | | | | | | |

Give a leftmost derivation of 2+3*4 and show
the parse tree

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-19

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example (cont)
| | | | | | | | |

Give a different leftmost derivation of
2+3*4 and show the parse tree

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-20

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Another example
| | | | | | | | |

Give two different derivations of 5+6+7

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-21

What’s going on here?
The grammar has no notion of precedence
or associatively
SolutionSolution

Create a non-terminal for each level of
precedence
Isolate the corresponding part of the grammarIsolate the corresponding part of the grammar
Force the parser to recognize higher
precedence subexpressions first
Use left or right recursion for left or rightUse left- or right-recursion for left- or right-
associative operators (non-associative
operators are not recursive)

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-22

Classic Expression Grammar

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor| / |
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7int :: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-23

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Check: Derive 2 + 3 * 4
int :: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-24

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Check: Derive 5 + 6 + 7
int :: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Note interaction between left- vs right-recursive rules
and resulting associativity

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-25

g y

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Check: Derive 5 + (6 + 7)
int :: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-26

Another Classic Example

Grammar for conditional statements
ifStmt ::= if (cond) stmtifStmt :: if (cond) stmt

| if (cond) stmt else stmt

Exercise: show that this is ambiguous
How?How?

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-27

ifStmt ::= if (cond) stmt
| if (cond) stmt else stmt

One Derivation

if (cond) if (cond) stmt else stmt

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-28

if (cond) if (cond) stmt else stmt

ifStmt ::= if (cond) stmt
| if (cond) stmt else stmt

Another Derivation

if (cond) if (cond) stmt else stmt

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-29

if (cond) if (cond) stmt else stmt

Solving “if” Ambiguity

Fix the grammar to separate if statements
with else clause and if statements with no
lelse
Done in Java reference grammar
Add l t f t i lAdds lots of non-terminals

Change the language
But it’d better be ok to do thisBut it d better be ok to do this

Use some ad-hoc rule in parser
“else matches closest unpaired if”

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-30

else matches closest unpaired if

Resolving Ambiguity with
Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt
Unmat hedStmt if (E p) Stmt |UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

formal, no additional rules beyond syntax
sometimes obscures original grammarsometimes obscures original grammar

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt

Check
(p) atc edSt t e se atc edSt t

UnmatchedStmt ::= if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

if (cond) if (cond) stmt else stmt

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-32

if (cond) if (cond) stmt else stmt

Resolving Ambiguity with
Grammar (2)

If you can (re-)design the language, avoid the
problem entirely

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt endif Expr then Stmt else Stmt end

formal, clear, elegant
allows sequence of Stmts in then and else branchesallows sequence of Stmts in then and else branches,
no { , } needed
extra end required for every if

(But maybe this is a good idea anyway?)(But maybe this is a good idea anyway?)

Parser Tools and Operators

Most parser tools can cope with
ambiguous grammarsambiguous grammars

Makes life simpler if used with discipline

Typically one can specify operatorTypically one can specify operator
precedence & associativity

Allows simpler ambiguous grammar withAllows simpler, ambiguous grammar with
fewer nonterminals as basis for generated
parser, without creating problems

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-34

parser, without creating problems

Parser Tools and Ambiguous
Grammars

Possible rules for resolving other
problemsproblems

Earlier productions in the grammar
preferred to later onesp
Longest match used if there is a choice

Parser tools normally allow for thisParser tools normally allow for this
But be sure that what the tool does is
really what you want

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-35

really what you want

Coming Attractions

Next topic: LR parsing
Continue reading ch 3Continue reading ch. 3

1/11/2009 © 2002-09 Hal Perkins & UW CSE C-36

