q CSE 401 — Compilers

Languages, Automata, Regular
Expressions & Scanners

Hal Perkins
Winter 2009

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-1

:-| Agenda

= Review basic concepts of formal
grammars

= Regular expressions

= Lexical specification of programming
languages

= Using finite automata to recognize
regular expressions

= Scanners and Tokens

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-2

5 Programming Language Specs

= Since the 1960s, the syntax of every
significant programming language has
been specified by a formal grammar
= First done in 1959 with BNF (Backus-Naur
Form or Backus-Normal Form) used to
specify the syntax of ALGOL 60

= Borrowed from the linguistics community
(Chomsky)

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-3

:.| Grammar for a Tiny Language

= program ::= statement | program statement
» statement ::= assignStmt | ifStmt

» assignStmt ::= id = expr;

w [fStmt .= if (expr) stmt

w expr.:i=id| int| expr+ expr

s /du=alblcliljlk|n|x]y]|z
wmint:=0[1]2]3|4|5]6]7]|8]9

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-4

Productions

= The rules of a grammar are called productions
= Rules contain

= Nonterminal symbols: grammar variables (program,
statement, id, etc.)

= Terminal symbols: concrete syntax that appears in programs
(@b,¢01,if,=() ..
= Meaning of
nonterminal ::= <sequence of terminals and nonterminals>
= In a derivation, an instance of nonterminal can be replaced
b¥ the sequence of terminals and nonterminals on the right
of the production
= Often there are several productions for a nonterminal
— can choose any in different parts of derivation

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-5

CSE 401 Wi09

:-‘ Alternative Notations

= There are several syntax notations for
productions in common use; all mean
the same thing
ifStmt .= if (expr) stmt
ifStmt — if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-6

B-1

5 Parsing

= Parsing: reconstruct the derivation
(syntactic structure) of a program

= In principle, a single recognizer could
work directly from a concrete,
character-by-character grammar

= In practice this is never done

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-7

:-| Parsing & Scanning

= In real compilers the recognizer is split into
two phases

= Scanner: translate input characters to tokens
= Also, report lexical errors like illegal characters and illegal

symbols
= Parser: read token stream and reconstruct the
derivation
source Scanner tokens Parser
1/6/2009 © 2002-09 Hal Perkins & UW CSE B-8

Why Separate the Scanner
and Parser?

= Simplicity & Separation of Concerns
= Scanner hides details from parser (comments,
whitespace, input files, etc.g
= Parser is easier to build; has simpler input
stream (tokens)
= Efficiency
= Scanner recognizes regular expressions —
proper subset of context free grammars
« Much faster than general CFG parsing

=« (But still often consumes a surprising amount of the
compiler’s total execution times)

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-9

But ...

= Not always possible to separate cleanly
= Example: C/C++/Java type vs identifier

= Parser would like to know which names are types
and which are identifiers, but

= Scanner doesn't know how things are declared ...
= So we hack around it somehow...

= Either use simpler grammar and disambiguate
later, or communicate between scanner & parser

= Engineering issue: try to keep interfaces as simple
& clean as possible

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-10

5 Definitions

= Pattern: a definition of a related set of lexical
entities
= Ex: all sequences of numeric characters, all sequences
of alphanumeric characters starting with an alphabetic
character

= Regular expressions are used in practice to define
patterns
= Lexeme: group of characters that matches a
pattern
= Ex: '1234','43204222’, ‘snork’, ‘fOrk”
= Token: class of lexemes matching a pattern,
distinguished by an attribute

= Ex: ‘snork’ and ‘fOrk’ are both identifier lexemes with
the actual names kept as an attribute

(CSE401 Au08 11

Typical Tokens in
Programming Languages

= Operators & Punctuation

s +-F/O){}[];:n<<====1=1_.

= Each of these is a distinct lexical class
= Keywords

= if while for goto return switch void ...

= Each of these is also a distinct lexical class (not a string)
= Identifiers

= Asingle ID lexical class, but parameterized by actual id
= Integer constants

= Asingle INT lexical class, but parameterized by int value
= Other constants, etc.

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-12

CSE 401 Wi09

B-2

Principle of Longest Match

= In most languages, the scanner should pick
the longest possible string to make up the
next token if there is a choice
= Example
return maybe != iffy;
should be recognized as 5 tokens

[RETURN | [1D(maybe) | [1p(iffy)] [sCoLON |

i.e., !=is one token, not two; “iffy” is an ID, not
IF followed by ID(fy)

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-13

Lexical Complications

= Most modern languages are free-form
= Layout doesn’t matter
= Whitespace separates tokens
= Alternatives
= Fortran — line oriented
= Haskell, Python — indentation and layout can imply
grouping
= And other confusions

= In C++ or Java, is >> a single operator or the
end of two nested templates or generic classes?

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-14

Formal Languages & Automata
Theory (a review in one slide)

= Alphabet: a finite set of symbols and characters
= String: a finite, possibly empty sequence of symbols
from an alphabet
= Language: a set of strings (possibly empty or infinite)
= Finite specifications of (possibly infinite) languages
= Automaton — a recognizer; a machine that accepts all strings
in a language (and rejects all other strings)
= Grammar — a generator; a system for producing all strings in
the language (and no other strings)
= A #articular language may be specified by many
different grammars and automata
= A grammar or automaton specifies only one language

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-15

Language (Chomsky) hierarchy:
quick reminder

= Regular (Type-3) languages are
specified by regular
expressions/grammars and csL
finite automata (FSAs)

= Context-free (Type-2)
languages are specified by
context-free grammars and
pushdown automata (PDAs)

= Context-sensitive (Type-1)
languages ... aren't too
important

= Recursively-enumerable (Type-
0) languages are specified by
general grammars and Turing | One distinction among the levels is what
machines is allowed on the right hand and on the

left hand sides of grammar rules

CSE401 Au08

!-’ Regular Expressions and FAs

= The lexical grammar (structure) of most
programming languages can be
specified with regular expressions
= (Sometimes a little cheating is needed)

= Tokens can be recognized by a
deterministic finite automaton
= Can be either table-driven or built by hand

based on lexical grammar

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-17

CSE 401 Wi09

:‘ Regular Expressions

= Defined over some alphabet 2
= For programming languages, alphabet is
usually ASCII or Unicode
= If reis a regular expression, L(re) is
the language (set of strings) generated
by re

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-18

B-3

3 Fundamental REs

re |L(re) |Notes

a {a} Singleton set, for each a in

€ {e} Empty string

g {} Empty language

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-19

:-| Operations on REs

re |L(re) Notes
rs |L(r)L(s)

rls [L(r)uL(s) [Combination (union)

Concatenation

r* |L(r)* 0 or more occurrences
(Kleene closure)

= Precedence: * (highest), concatenation, | (lowest)
= Parentheses can be used to group REs as needed

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-20

3 Abbreviations

= The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Some examples:

Abbr. |Meaning Notes

r+ (rr*)

r? (r]e)

1 or more occurrences

0 or 1 occurrence

[a-z] (albl...|2) 1 character in given range

[abxyz] | (a|b|x]y|z) |1 of the given characters

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-21

:.| Examples

re Meaning

+ single + character

! single ! character

= single = character

1= 2 character sequence

<= 2 character sequence

Xyzzy 5 character sequence

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-22

3 More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-97*

[a-zA-Z][a-zA-Z0-9_]*

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-23

CSE 401 Wi09

;‘ Abbreviations

= Many systems allow abbreviations to
make writing and reading definitions or
specifications easier
name .= re

= Restriction: abbreviations may not be
circular (recursive) either directly or
indirectly (else would be non-regular)

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-24

B-4

Example
o EXample

= Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+
number ::= digits (. digits)?
([eE] (+ | -)? digits) ?

1/6/2009 © 2002-09 Hal Perkins & UW CSE

Initial MiniJava Lexical Spec.

Program ::= (Token | Whitespace)*
Token ::= ID | Integer | ReservedWord | Operator |
Delimiter

ID ::= Letter (Letter | Digit)*

Letter ::=a | ... |z | A]| ... | Z

Digit ::

Integer ::= git*

ReservedWord: class | public | static | extends
void | int | boolean | if | else |
while | return | true | false | this | new
String | main | System.out.println

Operator ::=+ | - | * | /| <] <=]>]>] ==
1=] && | !

Delimiter zz= ; | - | ., 1 =1CID>I1{I13}X1LC11

3 Recognizing REs

= Finite automata can be used to
recognize strings generated by regular
expressions

= Can build by hand or automatically

= Not totally straightforward, but can be
done systematically

= Tools like Lex, Flex, Jlex et seq do this
automatically, given a set of REs

1/6/2009 © 2002-09 Hal Perkins & UW CSE

Finite State Automaton

= A finite set of states
= One marked as initial state
= One or more marked as final states
= States sometimes labeled or numbered
= A set of transitions from state to state
= Each labeled with symbol from Z, or €
= Operate by reading input symbols (usually characters)
= Transition can be taken if labeled with current symbol
= e-transition can be taken at any time
= Accept when final state reached & no more input
= Scanner uses a FSA as a subroutine — accept longest match each
time called, even if more input; i.e., run the FSA from the current
location in the input each time the scanner is called
= Reject if no transition possible, or no more input and not in final
state (DFA)

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-28

5 Example: FSA for “cat”

1/6/2009 © 2002-09 Hal Perkins & UW CSE

DFA vs NFA

= Deterministic Finite Automata (DFA)

= No choice of which transition to take under any
condition

= No € transitions (arcs)
= Non-deterministic Finite Automata (NFA)
= Choice of transition in at least one case
= Accept if some way to reach final state on given
input
= Reject if no possible way to final state
= i.e., may need to guess right path or backtrack

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-30

CSE 401 Wi09

B-5

3 FAs in Scanners

= Want DFA for speed (no backtracking)

= Conversion from regular expressions to
NFA is easy

= There is a well-defined procedure for
converting a NFA to an equivalent DFA

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-31

:-| From RE to NFA: base cases

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-32

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-33

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-34

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-35

CSE 401 Wi09

From NFA to DFA

= Subset construction

= Construct a DFA from the NFA, where each DFA state
represents a set of NFA states

= Key idea

= The state of the DFA after reading some input is the set of
all NFA states that could have reached after reading the
same input

= Algorithm: example of a fixed-point computation
= If NFA has 77 states, DFA has at most 27 states
= => DFA is finite, can construct in finite # steps

= Resulting DFA may have more states than needed
= See books for construction and minimization details

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-36

B-6

To Tokens

= Every “final” state of a DFA emits a token

= Tokens are the internal compiler names for the
lexemes

== becomes equal
(becomes leftParen
private becomes private
= You choose the names
= Also, there may be additional data ... \r\n might
include line count

DFA => Code

= Option 1: Implement by hand using procedures
= one procedure for each token
= each procedure reads one character
= choices implemented using if and switch statements
= Pros
= straightforward to write
= fast
= Cons
= a fair amount of tedious work
= may have subtle differences from the language specification

DFA => code [continued]

= Option 2: use tool to generate table driven parser
= Rows: states of DFA
= Columns: input characters
= Entries: action
= Go to next state
= Accept token, go to start state
= Error
= Pros
= Convenient
= Exactly matches specification, if tool generated
= Cons
= “Magic”
= Table lookups may be slower than direct code, but switch
implementation is a possible revision

Example: DFA for hand-
written scanner

= Idea: show a hand-written DFA for some
typical programming language constructs
= Then use to construct hand-written scanner
= Setting: Scanner is called whenever the parser
needs a new token
= Scanner stores current position in input
= Starting there, use a DFA to recognize the longest
possible input sequence that makes up a token
and return that token
= Disclaimer: Example for illustration only — you'll
use tools for the project (see further below)

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-40

Scanner DFA Example (1)

whitespace
or comments

0

end of input .
Accept EOF
Accept LPAREN
Accept RPAREN
: Accept SCOLON

1/6/2009 © 2002-09 Hal Perkins & UW CSE

Scanner DFA Example (2)

! =
d Q @ Accept NEQ
\[J[ﬂ‘ Accept NOT

CSE 401 Wi09

< /8\ = @ Accept LEQ
Lother] Accept LESS

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-42

B-7

Scanner DFA Example (3)

O -
Lother] Accept INT
1/6/2009 © 2002-09 Hal Perkins & UW CSE B-43

Scanner DFA Example (4)

[a-zA-Z0-9_]

[ather] Accept ID or keyword

= Strategies for handling identifiers vs keywords
= Hand-written scanner: look up identifier-like things in table of
keywords to classify (good application of perfect hashing)
= Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords
= Lots ‘o states, but efficient (no extra lookup step)

Implementing a Scanner by
Hand — Token Representation

= A token is a simple, tagged structure
public class Token {

public int kind;
public int intVal;
public String id;
// lexical classes
public static final int EOF = 0; // “end of file” token
public static final int ID = 1; // identifier, not keyword
public static final int INT = 2; // integer
public static final int LPAREN = 4;
public static final int SCOLN = 5;
public static final int WHILE = 6;
// etc. etc. etc. ...

// token’s lexical class
// integer value if class = INT
// actual identifier if class = ID

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-45

Scanner getToken() method

// return next input token
public Token getToken() {
Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(": result = new Token(Token.LPAREN); getch(); return result;
case ‘)': result = new Token(Token.RPAREN); getch(); return result;
case ';": result = new Token(Token.SCOLON); getch(); return result;

// etc. ...

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-47

CSE 401 Wi09

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-44
// global state and methods
static char nextch; // next unprocessed input character
// advance to next input char
void getch() { ... }
// skip whitespace and comments
void skipWhitespace() { ... }
1/6/2009 © 2002-09 Hal Perkins & UW CSE B-46
case ! //Vor!=
getch();
if (nextch =="'="
result = new Token(Token.NEQ); getch(); return result;
Yelse {
result = new Token(Token.NOT); return result;
case '<": /[< or <=
getch();
if (nextch =="'='
result = new Token(Token.LEQ); getch(); return result;
Yelse {
result = new Token(Token.LESS); return result;
// etc. ...
1/6/2009 © 2002-09 Hal Perkins & UW CSE B-48

B-8

getToken() (3)

case '0": case '1": case '2": case '3'": case '4':
case '5": case '6": case '7": case '8'": case '9':
// integer constant
String num = nextch;
getch();
while (nextch is a digit) {
num = num + nextch; getch();

result = new Token(Token.INT, Integer(num).intValue());
return result;

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-49

getToken (4)

case 'a": ... case 'z":
case 'A": ... case 'Z": // id or keyword
string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {
s = s + nextch; getch();
}
if (s is a keyword) {
result = new Token(keywordTable.getKind(s));
}else {
result = new Token(Token.ID, s);

return result;

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-50

Automatic Scanner Generation
ForMiniJava

= We use the jflex tool to automatically create a
scanner from a specification file,
Scanner/minijava. jflex

= We use the CUP tool to automatically create a
Barser from a specification file,
arser/minijava.cup

= Token classes are shared by jflex and CUP.
CUP generates code for the token classes
specified by the Symbol class

= The MiniJava Makefile automatically rebuilds
the scanner (or parser) whenever its
specification file changes

Symbol Class

Tokens are represented as instances of class Symbol
class Symbol {
Int sym; // which token class?
Object value; // any extra data for this lexeme

H
A different integer constant is defined for each token
class in the sym helper class
class sym {
static int CLASS = 1;
static int IDENTIFIER = 2;
static int COMMA = 3;

3
Can use this in printing code for Symbols; see

symbolToString in minijava.jflex

Token Declarations in CUP

= Declare new token classes in Parser/minijava.cup, using
terminal declarations
= include Java type if Symbol stores extra data
= Examples
/* reserved words: */
terminal CLASS, PUBLIC, STATIC, EXTENDS;

/; . l;pe rators: */
terminal PLUS, MINUS, STAR, SLASH, EXCLAIM;

7% delimiters: */
terminal OPEN_PAREN, CLOSE_PAREN;
terminal EQUALS, SEMICOLON, COMMA, PERIOD;

7> tokens with values: */
terminal String IDENTIFIER;
terminal Integer INT_LITERAL;

CSE 401 Wi09

JFlex Token Specifications

= Helper definitions for character classes and re’s
letter = [a-z A-Z]
eol = [\r\n]

= Simple token definitions are of the form:
regexp { Java stmt }

regexp can be (at least):

a string literal in double-quotes, e.g. "class", "<="

a reference to a named helper, in braces, e.g. {letter}

a character list or range,in square brackets ,e.g. [a-z A-Z]

a negated character list or range, e.g. [*\r\n]

= . (which matches any single character)

= regexp regexp,regexp|regexp,regexp*,regexp+,
regexp?, (regexp)

B-9

5 J Tlex Specifications (cont.)

» Java stmt (the accept action) in a token
specification is typically:
« return symbol (sym.CLASS); for a simple
token

=« return symbol (sym.CLASS,yytext());
for a token with extra data based on the
lexeme stringyytext()

= empty for whitespace

CSE 401 Wi09

Coming Attractions

= Homework this week: paper exercises on
regular expressions, etc.

= Next week: first part of the compiler
assignment — the scanner
= Next topic: parsing

= Will do LR parsing first — we need this for the
project, then LL (recursive-descent) parsing

1/6/2009 © 2002-09 Hal Perkins & UW CSE B-56

B-10

