CSE 401 Final Exam

Name

March 19, 2009

Sample Solution

The exam is closed book, closed notes, closed electronics, closed neighbors, open mind,
Please wait to turn the page until everyone has their exam and you have been told to begin.

If you have questions during the exam, raise your hand and someone will come to you.

Legibility is a plus as is showing your work. We can’t read your mind, but we’ll try to make sense of

what you write.

1 /10
2 /8
3 /8
4 /10
5 /8
6 /9
7 /8
8 /15
9 /12
10 /12
Total / 100

CSE 401 Final, March 19, 2009

Sample Solution

Page 1 of 10

Question 1. (10 points) The original version 1.0 of Java used an interpreter in the Java VM to execute
programs. Later versions of Java added a “just-in-time” compiler, which translated the Java
intermediate code to native machine code (x86, powerpc, or others) on the fly, and executed the
translated code instead of interpreting the intermediate code directly.

(a) Give one plausible reason why Java 1.0 only included an interpreter, and not a just-in-time compiler.
Why was this a reasonable engineering decision?

There were at least two good reasons:
e Faster to implement. No need to supply a full compiler back-end.

e Portable. Java was easier to move to different architectures because only the interpreter and
core parts of the runtime environment needed to be re-implemented on the new machine.

(b) Give one plausible reason why later versions of Java include a just-in-time compiler in addition to
the interpreter. Why was this decision made, particularly since the interpreter already existed and
already executed programs correctly?

Execution speed. Java programs run by the interpreter are significantly slower than programs
compiled to native code, or equivalent C/C++ programs translated by a conventional compiler.

CSE 401 Final, March 19, 2009 Sample Solution Page 2 of 10

Question 2. (8 points) In class we looked at the visitor pattern, which was a way of organizing code for
the type checker and other AST operations. This involved adding an accept method with a visitor
object parameter to each AST node type, and each visitor object had a collection of visit methods,
one for each type of AST node.

Although this is a somewhat complicated scheme, it is widely used in compilers and other tools
implemented in object-oriented languages. Why is this a useful way to organize the code, and what
problem is it trying to solve?

It solves a modularity problem. If operations like type-checking are spread across all of the individual
AST nodes, then adding or modifying an operation requires changing multiple AST classes. The visitor
pattern allows us to group all of the methods for something like type-checking into a single module.

Question 3. (8 points) The Minilava project compiler includes separate symbol tables for different
scopes, such as a global symbol table for class information and separate symbol tables for individual
methods. The compiler makes several passes over the AST to fill in these tables.

Is it really necessary to make several passes over the AST to collect this information? Is there some
technical reason that this couldn’t be done in a single pass?

Yes. Java allows programs to use classes and methods before their declarations have appeared in the
program. We need multiple passes to collect declaration information before we can check uses of
things to be sure they are correct.

CSE 401 Final, March 19, 2009 Sample Solution Page 3 of 10

Question 4. (10 points) It is certainly possible to generate code for a target machine by making a pass
over the AST and generating code directly. This is actually done in some simple compilers. But in most
production compilers the AST is lowered to create a lower-level IL program, and that is used to generate
target code, as in MiniJava.

Give two different reasons why generating a lower-level IL version of the program is a useful thing to do
in a compiler (not just in MiniJava).

Reason 1:

The IL code is usually closer to the target machine and it is easier to generate code from it compared
to generating code directly from the AST.

Reason 2:

Many optimizations are easier or more effective on IL code.

Question 5. (8 points) The lower-level IL code in MiniJava and in most compilers creates and uses an
unbounded number of temporary variables (t1, t2, t3, ...)forintermediate values, instead of
using the registers of the target machine in the IL code. Why? Why not just use the target machine
registers directly? (There are at least a few reasons — you only need to give one.)

There are at least a couple of good reasons:
e ltis easier to generate and optimize IL code if we have as many temporaries as we need.

e It avoids tying the IL code and parts of the compiler that process it (including most of the
optimizer) to the peculiarities of a particular machine register set or architecture.

CSE 401 Final, March 19, 2009 Sample Solution Page 4 of 10

Question 6. (9 points) x86 hacking, part . Suppose X is an integer variable located at offset +12
from the stack frame base register ebp (i.e., 12(%ebp), or [ebp+12] in intel notation). Write

three different x86 instruction sequences that implement the assignment x=x+1

(i.e., three

different ways to increment the value of x and store the incremented value back in memory).

You can use any registers you wish, and you can use either intel or gnu assembler syntax (but
don’t mix the two assembler syntaxes together). The sequences must use different instructions
or have instructions in a different order — it is not ok to just repeat the same exact instructions
but using different registers. It is also not ok to add useless instructions that do nothing just to

make the code different.

Code for x=x+1, given that x is located at ebp+12:

There are many possibilities. Here are several (using Intel syntax):

inc

mov
inc
mov

mov
add
mov

mov
add
mov

mov
mov
add
mov

mov
lea
mov

[ebp+12]

eax, [ebp+12]
eax
[ebp+12],eax

eax, [ebp+12]
eax,1
[ebp+12],eax

eax,1
eax, [ebp+12]
[ebp+12],eax

eax,1

ebx, [ebp+12]
eax, ebx
[ebp+12],eax

eax, [ebp+12]
eax, [eax+1]
[ebp+12],eax

One that is not possible is add [ebp+12],1. The trouble is that an x86 instruction can only contain
a single immediate constant or displacement. So it can contain either the offset 12 or the value 1, but

not both.

CSE 401 Final, March 19, 2009

Sample Solution

Page 5 of 10

Question 7. (8 points) x86 hacking, part Il. Consider the following C function.

int foo(int a, int b) {
int x;
// draw frame at this point in execution
X = a+b;
return Xx;

In the space below draw a picture of the stack frame for function foo right before execution of the
assignment statement in the body of the function. Your picture should show where the parameters and
variables are located, as well as any additional items that are part of the stack frame for foo, such as the
return address. You should also draw labeled arrows showing where in the stack frame the registers
ebp (frame pointer) and esp (stack pointer) point to.

High addresses

(space belonging to calling function)

return address

ebp —» old ebp

esp —» X

Low addresses

CSE 401 Final, March 19, 2009 Sample Solution Page 6 of 10

Question 8. (15 points) Having successfully added arrays to MiniJava, we’d now like to add Java’s for-
each statement to our compiler. In full Java, the for-each statement iterates through an array or a
collection. For this question we only want to implement it for arrays.

The syntax of a for-each statement is
for (type Lloop-var : array-expr) statement

The meaning is to execute the statement repeatedly with loop-var assigned to successive values from
the array-expr beginning with element 0. The loop-var is declared in the for statement and it has the
given type, which must match the type of the array elements.

For example, if v is an array of integers, then the following statements would add up the elements of
the array v and store the result in sum and the number of array elements in count:

sum = @; count = 0O;
for (int x : v) { sum = sum+x; count = count+l; }

(a) Draw the AST node that you would need to add to the compiler to support this new for-each

statement.

(b) What changes would need to be made to the semantic analysis part of the compiler to handle the
new for-each statement?

e Verify that the expression has an array type

e Verify that the array element type matches (or is assignment-compatible with) the variable
type

e Add the loop variable to an appropriate symbol table with the declared type

(continued next page)

CSE 401 Final, March 19, 2009 Sample Solution Page 7 of 10

Question 8. (cont.) For-each syntax repeated for reference.
for (type Lloop-var : array-expr) statement

(c) What IL code would be generated for a for-each statement? To answer this question, you should use
the IL code as shown in lecture (e.g., tO=t1+t2; iffalse t17 goto L;), notthe specific IL class
instances used in the MiniJava project code (ILExprWhatever).

A copy of the slides summarizing the Minilava’s IL code is attached as the last page of this exam for
reference. You will not be graded on whether your code conforms strictly to the IL syntax, but it should
be basically the same operations, and at the same semantic level.

There were, of course, various ways to solve the problem, and we also were flexible on the notation
as long as it captured operations at the IL level. Here is one solution.

to

array-expr -> length; # loop bound

t1

0; # loop counter
label test;

t2 = t1 < te;

iffalse t2 goto done;

loop-var = array-expr -> items[tl];

<code for statement goes here>

t1 = t1 + 1;

goto test;

label done;

A couple of solutions also included a test to check that array-expr was not null, which should be done
in a full implementation. But we didn’t mark off if that was not included.

CSE 401 Final, March 19, 2009 Sample Solution Page 8 of 10

Question 9. (12 points) For this question we’d like to perform local constant propagation and folding,

and dead assignment elimination on the IL code generated for the following statements:

x = 10;
i= 3;
al[i] = x;

Assume that X, i, and the array a all contain 4-byte integer variables.

In the table below, the first column shows the original IL code generated for these statements.

(a) Fill in the second column with the statements from the first column after local constant propagation

and folding (compile-time arithmetic) have been performed. You should assume that constant

propagation tracks the contents of variables stored in the stack frame as well as temporaries like t2.

(b) In the third column, check the box “delete” if the statement would be eliminated by dead

assignment elimination after performing the optimizations in part (a). You should assume that the

variable x and the array a are live on exit from the block of code, and the variable i is not live on exit.

Original code

After constant propagation and folding

Deleted by dead code
elimination? (mark X if so)

t1=10 t1=10 X
*(fp + xoffset) = t1 *(fp + xoffset) = 10

t2=3 t2=3 X
*(fp + ioffset) = t2 *(fp + ioffset) =3 X
t3 = *(fp + xoffset) t3=10 X
t4 = *(fp + ioffset) t4=3 X
t5=t4*4 t5=12 X
t6=t5+fp t6=12+fp

*(t6 + aoffset) = t3

*(t6 + aoffset) = 10

Reminder: x and the contents of array a are live on exit; i is not live on exit.

A few people noted that if the compiler were a bit cleverer, it could recognize that aoffset+12 could be
computed at compile time, and then the assignment to t6 would be dead and could be eliminated.

CSE 401 Final, March 19, 2009 Sample Solution Page 9 of 10

Question 10. (12 points) A little coloring. Considering the following code fragment:

a = read();
b = a*a;
c = read();
d = b+c;
if (d > a) {
e = d+1;
} else {
e = a+l;
print(a);
}
print(e);

(a) Draw the control flow graph for the code, keeping the diagram to the left side of the paper.
a

a = read(); b
b = a*a; © 4
c = read();
d = b+c;
d > a
e
e
e=a+l; _ .
print(a); e=d+1;
print(e);

(b) To the right of the control flow graph, neatly show the live ranges of the variables.

(c) Below, draw the interference graph for the variables. Use the left side of the paper.

Notes: b and c do not interfere with d since they are dead after b+c is computed. d does not interfere
with e for a similar reason. Three registers are needed, but there are several possible assignments.

rl:a; r2:b,d,e; r3:c or

b d
rl:a; r2:b; r3:c,d, e or
\\\\a////

rl:a; r2:b,d; r3:c,e or

/ \ rl:a; r2:b,e; 1r3:¢cd
c e

(d) To the right of the interference graph, indicate which groups of variables can occupy the same
register, based on the information in the interference graph. You do not need to go through the steps of
the graph coloring algorithm explicitly, although it may be helpful as a guide to assigning registers. If
there is more than one possible answer that uses the minimum number of registers, any of them will be

fine.

CSE 401 Final, March 19, 2009 Sample Solution Page 10 of 10

