
 1 of 7

CSE 401 Midterm Exam – Winter 2008 Anderson/Roberts

Name: _____Sample Solution__________________________________

CSE Email: __

Total: 90 points.

Question Max Points Score
1 10
2 8
3 10
4 16
5 14
6 12
7 10
8 10

Total 90

This is a “closed everything” test. Answer all questions.

Keep this page up until told to start

 2 of 7

In this test the following alphabetic sets can be used.
Alpha ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Num ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1. [10] NOTE: Meta-rules such as [] for “zero or one” are not allowed in this
question, you may use epsilon if needed.

(a) A file name base is any sequence of “properly hyphenated” letters or digits, where a
sequence is properly hyphenated if it doesn’t begin or end with a hyphen and there are no
consecutive hyphens; e.g. i8-a-Hot-dog. A file name base must be at least one character
long. Give a regular expression for

file_name_base ::=

No unique answer, most common was (Alpha|Num)+ (-(Alpha|Num)+)*

(b) A filename is one or more file_name_base sequences each separated from the next by
a period followed optionally by a period and an extension. An extension is exactly three
letters. If there is a period in the filename then there must be an extension. So, a is a file
name; a.b is not a filename, and a.b.doc is. Give a regular expression for

filename ::=

file_name_base (E | (.file_name_base)* .Alpha Alpha Alpha)

Most common mistakes: not allowing base.extension; not requiring an extension if
.file_name_base is present.

 3 of 7

2. [8] In the MiniJava compiler, we classify tokens into important groups. Give two
examples for each group:

reserved word: delimiter:

for, break, if, class, public, … (,), {, },[,], ;, =, …

operator: tokens with values:

+, -, *, /, ||, … This caused the most difficulty. We were
looking for IDENTIFIER, INT_LITERAL or DOUBLE_LITERAL but we gave full
credit for examples of these such as 5 or 7.9E4.

3. [10] Give (a) the concrete syntax tree and (b) the abstract syntax tree for:
(c + a) * b using the grammar and MiniJava-like nodes. E ::= E + T | T

T ::= T * F | F
F ::= id | (E)

 Derivation (Concrete Syntax Tree) AST
The concrete tree did not cause too many problems, the most common mistake was not
rooting the tree in E and just starting with T.

The abstract tree using MiniJava nodes turned out to be difficult; only one person got it
completely correct. Common mistakes were including extra E or T nodes; labeling the
operator nodes with just “+” instead of AddExpr (or MulExpr) and not including a
VarExpr node for the identifiers.

 4 of 7

4. [16] Given the following grammar: S ::= aS | aSbS | c

Please use examples or give definitions to explain your answer to the questions below.
Is this grammar:
a) Left Recursive? yes no

Why/Why not?

S does not appear as the leftmost symbol on the RHS.

b) Suitable for predictive parsing? yes no
Why/Why not?

aS is a common prefix, should be left factored

c) Ambiguous? yes no
Why/Why not?

Ex. You can generate two parse trees for aacbc

d) Regular? yes no
Why/Why not?

This has recursive structure and you cannot create a RE to recognize it (# of a’s
must be > # of bs’)

 5 of 7

5. [14] Given the following grammar

s ::= expr $
expr ::= a | a subs
subs ::= [expr] | [expr] subs

Build the first couple of states in the DFA for an LR parser for this grammar.
a) Form the closure for the production: s ::= expr $, shown in the box labeled State 1

below.
b) ALSO draw and label the edges out of State 1.
c) ALSO show the complete contents (closure)of the states reachable by the edges

drawn out of State 1
d) Indicate anything special about states (e.g., conflicts, reducing states)

Do not draw any edges out of other states. You should only have 2-5 states total. We are
not asking you to draw the entire DFA.

State 1

s ::= . expr $

expr ::= .a
expr ::= .a subs

expr ::= a.
expr ::= a . subs

subs ::= .[expr]
subs ::= .[expr] subs

shift-reduce conflict here

s ::= expr . $

expr ::= .a
expr ::= .a subs

expr

a

 6 of 7

6. [12] Suppose we want to add the following conditional statement to MiniJava:

 ifequal (exp1, exp2)
 statement1
 smaller
 statement2
 larger
 statement3

The meaning of this is that statement1 is executed if the integer expressions exp1 and
exp2 are equal; statement2 is executed if exp1 < exp2, and statement3 is executed if
exp1 > exp2. Note that ifequal, smaller, and larger are all keywords.

(a) [5] Give context-free grammar production(s) for the ifequal statement that allows
either or both of the “smaller” and “larger” parts of the statement to be omitted. If
both the “smaller” and “larger” parts of the statement appear, they should appear in
that order. You do not need to give productions for expressions and other types of
statements, just the ifequal statement (which should be considered a statement as
well).
Write your grammar here:
Here are two solutions. The first one uses εεεε-productions

 stmt ::= ifequal (exp , exp) stmt optsmaller optlarger
 optsmaller ::= smaller stmt | εεεε
 optlarger ::= larger stmt | εεεε

The other one is more brute-force but doesn’t include any εεεε-productions.

 stmt ::= ifequal (exp , exp) stmt
 | ifequal (exp , exp) stmt smaller stmt
 | ifequal (exp , exp) stmt larger stmt
 | ifequal (exp , exp) stmt smaller stmt larger stmt

(b) [5] Is the grammar with your production(s) from part (a) ambiguous? If not, argue
informally why not; if it is ambiguous, give an example that shows that it is.
Yes. This grammar has the same sort of problem as the “dangling else” in the usual
grammar for conditional statements. There are two possible ways to derive, for
example,

 ifequal (exp , exp) ifequal (exp , exp) stmt smaller stmt

A derivation can be given where the “smaller” part is associated with the second
“ifequal”, and another can be given that associates it with the first “ifequal”.
(c) [2] When compiling this statement, what rule(s) or condition(s) should the type
checker verify?
Verify that expr1 and expr2 are both of type integer

 7 of 7

7. [10] In class we discussed static/lexical scoping and static typing. What is the
difference? Give a definition for both. Please give a pseudo code example if it helps
your answer.

Scoping has to do with visibility of a variable and finding the correct instance of a
variable to bind with.

Typing has to do with determining the type of a variable.

Static or lexical scoping determines which instance of a variable to use at compile
time by examining the lexically enclosing scope (nesting seen in the code on a piece
of paper)

Dynamic scoping is done at run time and uses the nesting of procedure calls to
determine which variable instance to use.

Static typing is done at compile time. Dynamic typing is done at run time. You can
have strong or weak typing in either case.

8. [10] Give an example to show the difference between structural equivalence and
name equivalence.

Example 1: s1 and s2 are equivalent under structural equivalence (not under name
equivalence)
struct { struct {
 int x; int x;
 } s1; } s2;

Example 2: s3 and s4 are equivalent under name equivalence (and under structural
equivalence)
typedef struct {
 int x;
} S;
S s3;
S s4;

Note that this has to do with the TYPE of variables. Not equivalent values stored in
variables.

