
 1 of 12

CSE 401 Final Exam – Winter 2008 Anderson/Roberts

Name: __

CSE Email: __

Total: 90 points.

Question Max Points Score
1 10
2 4
3 5
4 4
5 14
6 16
7 16
8 21

Total 90

2 Extra Credit Questions on the back of the last page. _______

This is a “closed everything” test. Answer all questions.

Keep this page up until told to start

 2 of 12

1. [10] Put an X in the column of the earliest stage at which each MiniJava rule could be

enforced.

 Scanning Parsing
(w/o extra

action code)

Type-checking

Intermediate
Code Gen

Curly braces grouping
statements are balanced

In expressions * has
precedence over +

Case is not significant in
identifiers

int is followed by a not-
previously-declared
identifier

The ** operator is right
associative

2. [4] Given that running a program using an interpreter is often likely to be slower than

running a compiled program, give two good (and well-explained) reasons why people
still build and use interpreters.

 3 of 12

3. [5] Garbage Collection:

a) Briefly describe how mark/sweep garbage collection works.

b) Copying collection can be thought of as an improvement over mark/sweep
collection because……

c) Although it is also true that copying collection can be thought of as inferior to
mark/sweep collection because……

(You don’t have to describe copying collection but feel free to if it helps make your
answer clearer.)

4. [4] Why is instruction selection more difficult on a CISC machine than a RISC

machine?

 4 of 12

5. [12] In the following C++ code example, the function p takes two integer parameters.

Parameter a is passed by value, and parameter b is passed by reference (as
indicated by the & after int). As discussed in class, this determines the semantics of
whether or not modifications to b persist after we return from function p. As seen in
the code below, in C++ the programmer is still able to refer to b inside of function p
as if it were an integer type (without dereferencing a pointer etc.).

int p(int a, int& b) {
 int x;
 int y;
 x = a + b;
 b = x + 5;
 y = b; ���� Point B. (Stop here, after executing this stmt)
 return y;
}

void main() {
 int c = 500; ���� Point A. (Start here)
 int d = 100;
 int e = 0;
 e = p(c, d);
...

Assuming that the code starts executing at Point A, draw a picture of everything that
would be pushed onto the stack from Point A up through Point B. This includes
local variables in main. Use the x86 calling convention as discussed in class. You may
ignore the issue of caller- and callee-saved registers.

• Be sure to indicate what esp (stack pointer) and ebp (frame pointer) point to at
this point in time.

• Be sure to indicate the actual value that has been pushed onto the stack, as well as
the variable name(s) associated with each stack location. In particular, be sure we
can tell how you implement pass by reference behind the scenes. You do not need
to show the x86 assembly code that accesses variable b, but you should be sure
that the contents of your stack support call by reference (as opposed to call by
value-result, or copy-in, copy-out).

Please write your answer on the next page. -�

 5 of 12

(Page for answer to previous question.)

 High Addresses

Low Addresses

ebp -> ??

esp -> ??

Draw arrows to
indicate what
ebp and esp
point to:

 6 of 12

6. [16] Given the following Java code:

public class Dog {
 protected int age;
 protected double weight;

 public void eat(){System.out.println("gobble");};
 public void speak(){System.out.println("bow wow");};
 public int sleep(){return 0;};
}

public class Husky extends Dog {
 protected int favoriteNumber;

 public void speak(){System.out.println("woof");};
 public double findCoug(){return 0.5;};

 public static void main(String[] args){
 Dog A = new Husky();
 Dog B = new Dog();
 Dog C = new Husky();
 B.eat();
 A.speak();
 C.age = 5;
 }
}

a) Draw a picture of A, B, and C, including where variables would reside and how their

data members would be laid out in memory.

b) Draw any mechanisms that support dynamic method binding (as is the default in

Java). (e.g. vtables) You can make the simplifying assumption that this class
structure is fixed and known at compile time -- no new classes or methods will need
to be added at run time. You may also ignore constructors.

c) Indicate what part of memory each of the items you drew in response to parts a) and

b) reside in: stack, heap, or static areas. No need to redraw your picture, just be sure
to clearly indicate with a label where each part is (unclear answers will be counted as
wrong).

 7 of 12

Page for answer to Dog question.

 8 of 12

7. [16] Name the four different scopes of optimization we discussed in lecture and for
each scope, give an example of an optimization appropriate and/or typically done at
that scope.

a) Name of Scope:

Description of where it applies:

Name of example optimization:
Description of Optimization:

b) Name of Scope:
Description of where it applies:

Name of example optimization:
Description of Optimization:

c) Name of Scope:
Description of where it applies:

Name of example optimization:
Description of Optimization:

d) Name of Scope:
Description of where it applies:

Name of example optimization:
Description of Optimization:

 9 of 12

8. [21] This question refers to a construct we had on the midterm exam:

 ifequal (exp1, exp2)
 statement1
 smaller
 statement2
 larger
 statement3

The meaning of this is that statement1 is executed if the integer expressions exp1 and
exp2 are equal; statement2 is executed if exp1 < exp2, and statement3 is executed if
exp1 > exp2. Note that ifequal, smaller, and larger are all keywords.

Here is one set of context-free grammar productions for the ifequal statement that
allows either or both of the “smaller” and “larger” parts of the statement to be
omitted, and requires that if both the “smaller” and “larger” parts of the statement
appear, they should appear in that order.

stmt ::= ifequal (exp , exp) stmt optsmaller optlarger
optsmaller ::= smaller stmt | εεεε
optlarger ::= larger stmt | εεεε

The question for this exam is about what changes we would need to make to the MiniJava
compiler in order to add this statement to the language.

a) What changes would have to be made to the scanner to handle this?

b) Is the grammar given above ambiguous or not? Circle one: Yes No

c) Regardless of whether the above grammar is ambiguous or not, describe two
strategies for dealing with an ambiguous grammar:

 10 of 12

The ifequal statement repeated again for convenience:

 ifequal (exp1, exp2)
 statement1
 smaller
 statement2
 larger
 statement3

d) Draw the AST node(s) you would add to support the ifequal statement.

e) What changes would need to be made to semantic analysis to handle the ifequal

statement?

f) The following is an example of (pseudo) Minijava Intermediate Language code
that could be generated for an if-else statement: if (testExpr) thenStmt else elseStmt

 iffalse (testExpr) goto falselabel
 thenStmt
 goto donelabel
 falselabel:
 elseStmt
 donelabel:

On the next page, show the (pseudo) Minijava Intermediate Language code that could
be generated for an ifequal statement. To keep things simple, just generate code for
the case that BOTH the smaller and larger parts of the statement exist.

 11 of 12

We have generated the first part of the code for you that will generate code for exp1 and
exp2 and store their results in temp t1 and t2 respectively. Fill in the rest of your IL code
below. Since this is pseudo IL we won’t require this to match the actual MiniJava IL
exactly, but try to use something as close to MiniJava IL as you can.

 t1 := exp1
 t2 := exp2

(Two Extra credit questions on the back of this page.-->)

 12 of 12

Extra Credit Questions:

1) Give two advantages of dynamic linking over static linking.

2) What is the primary goal of Binary Optimization (aka Post Link Optimization) as
we discussed in class? Describe one method used to achieve this goal.

