
CSE 401 Final Exam

Name ___ID __________________

Answer all questions.
Do your own work.
Show your work.
Check your work.

Do Not Start Exam Until Told To Do So

CSE401 Final Exam

1. [10] Circle X of the earliest stage at which each MiniJava rule could be enforced?

Scanning

Parsing
(w/o extra

action
code)

Type-
checking IR

curly braces grouping statements
are balanced. X X X X

either e or E is used consistently in
scientific notation but not both X X X X

identifier after extends refers to
previously defined class X X X X

int is followed by a not-
previously-declared identifier X X X X

a break statement occurs inside a
loop X X X X

2. [4] Describe Java using two of the terms: static, dynamic, weak, strong

3. [6] The invention of intermediate code (IR) was an important milestone in the
development of compilers because it made the compiler writing task easier. What are the
principle advantages of intermediate code?

4. The original Fortran language had a statement called the Computed Goto:

GOTO (<line_label_list>) <integer_expression>

which had the following semantics: the integer expression is evaluated and the result is
used as an index into the <line_label_list>, and control is transferred to that line. Recall
that Fortran has user-defined (numeric) line labels, so an example statement would be

 X = 1
 GOTO (100, 200, 300) X+1
10 ...

which would jump to the statement labeled 200. Note that if X < 1 or X > list length, the
Computed GOTO falls through, i.e. executes line 10 in the example.

Suppose that during type check every user defined line label (e.g. 10 in the preceding
example) is given a symbolic name (e.g. L10) and entered in the symbol table, and that
Fortran’s data space is all global.

(a) [8] Give correct (it doesn’t have to be optimal in any sense) 3-address IR code for the
above Computed GOTO statement. (Use the 3 address code of lectures rather than
MiniJava lowering language; the compiler can’t do arithmetic on line labels.)

 (b) [5] Give a pseudo code algorithm to generate code for Computed GOTO statements;
the first step is provided:

1. Code gen <integer_expression> leaving the result in temporary t.

2.

(c) [6] A Computed GOTO on a Boolean value B of the following form amounts to an if
statement

 GOTO (20, 40) B+1
20 …

Apply the algorithm of part 4(b) to this code.

(d) [5] Say (briefly!) what is wrong with the compiled code of part (c).

(e) [5] Give an optimized alternative to part (c).

5. Consider the code at right. (a) [4] In the conditional
statement which are more numerous, the defs or the uses?
List each of the uses. [Check your work.]

(b) [6] Draw the control flow graph for the code, keeping
the diagram to the left side of the paper.

(c) [8] To the right of the control flow graph entries neatly give the live ranges, assuming
that ub and lb are live on entry to this section of code.

(d) [8] Give the interference graph using the data from (c).

span = ub – lb + 1;
space = span * 12;
ex = span % 16;
if (ex == 0) {
 why = 16;
 zed = span – 256;
}
else {
 amt = 16-ex;
 zed = span – 2^ex;
 why = 0;
 space += 12 * amt;
}
vee = zed + 2ex;
System.out.println(vee +
 why);

(e) [10] Copy your interference graph to this page. Apply the recursive coloring
algorithm given in class to the interference graph of (d). Because this is a heuristic
algorithm you MUST show all work to determine that your outcome is correct. Use
numbers for colors. [Abbreviate node labels or maintain geometry to simply drawing.]

6. [20] Given the source code

i = 0;
c[i] = a[i]*b[i];

(a) give the equivalent standard, unoptimized 3-address code; number each line of
generated code.

(b) Give the most optimized equivalent to part (a), documenting each line to explain
either that it is “unchanged” or which lines it is derived from and by what optimization.
We are grading the documentation.

7. [20] The dynamic memory usage of a program uses basically four word units of
memory. The plan is to use a Generational Garbage Collector having two generations and
four “birthdays” required to become “old”. The standard garbage collection begins by
marking all reachable elements in From with a 1 indicating which cells are having
another “birthday.” An example From space is shown after this first step. In the space
below, complete the garbage collection, drawing whatever structure(s) you need, if any.

1

3

0

0

3

1

0

2

2

1

1

3

1

2

4

0

0

5

1

0

6

1

0

7

0

1

8

0

3

9

1

3

A

1

2

B

0

3

C

0

0

D

1

0

E

0

1

F

H I J K L M N O P Q R S T U V W

Mark

Previous birthdays

Value

Address x 16

From

