
1

Intermediate Representations

2

IR in compilers

• Internal representation of input program by
compilers
– Computation expressed in the input program
– Results of program analysis

• Control-flow graphs, data-flow graphs, dependence graphs
– Symbol tables

• Book-keeping information for translation (eg., types and
addresses of variables and subroutines)

• External format of IR
– Needs to be serialized
– Allows independent passes over IR

3

Intermediate Representations

• Decisions in IR design affect the speed and efficiency of
the compiler

• Some important IR properties
– Ease of generation

– Ease of manipulation

– Procedure size
– Freedom of expression

– Level of abstraction

• The importance of different properties varies between
compilers

• Selecting an appropriate IR for a compiler is critical

4

Types of Intermediate Representations

Three major categories
• Structural

– Graphically oriented
– Heavily used in source-to-source translators, program

correctness tools
– Tend to be large
– Examples: Trees, DAGs

• Linear
– Pseudo-code for an abstract machine
– Level of abstraction varies
– Simple, compact data structures
– Easier to rearrange
– Examples: 3 address code, Stack machine code

• Hybrid
– Combination of graphs and linear code
– Example: control-flow graph

5

Level of Abstraction

• The level of detail exposed in an IR influences the
profitability and feasibility of different optimizations.

• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1
sub rj, r1 => r2
loadI 10 => r3
mult r2, r3 => r4
sub ri, r1 => r5
add r4, r5 => r6
loadI @A => r7
Add r7, r6 => r8
load r8 => rAij

High level AST:
Good for memory

disambiguation
Low level linear code:
Good for address calculation

6

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with the
nodes for most non-terminal nodes removed

x

2 y

*

x -2 * y

2

7

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

• Makes sharing explicit
• Encodes redundancy
• Same expression twice means that the compiler

might arrange to evaluate it just once!

x

2 y

*

←←←←

z
+

←←←←

w

z ← x - 2 * y
w ← x + 2 * y

8

Stack Machine Code
Originally used for stack-based computers, now Java

and C#
• Example:

x - 2 * y =>

Advantages
• Compact form

• Introduced names are implicit, not explicit
• Simple to generate and execute code

• Useful where code is transmitted over slow communication links
(e.g., the net)

push x
push 2
push y
multiply
subtract

9

Three Address Code

Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * y =>

Advantages:
• Resembles many machines

• Introduces a new set of names (the temp results)

• Compact form

t1 ← 2 * y
z ← x – t1

10

Three Address Code: Quadruples

Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

245sub

X4load

123mult

22loadi

Y1load

load r1, y
loadIr2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Quadruples

11

Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub

xload

(2)(1)mult

2load

yload(1)

(2)

(3)

(4)

(5)

12

Implementation of MiniJava Compiler

Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code

Generator

Code Optimizer

Back end

Target

Program

Tokens

Abstract syntax

trees (ASTs)

Type checked AST
and symbol tables

Intermediate
Language ASTs

Intermediate
Language ASTs

3

13

Symbol Tables

• After ASTs have been constructed, the compiler
must check whether the input program is type-
correct. During this type checking, a compiler
checks whether the use of names (such as
variables, functions, type names) is consistent
with their definition in the program.

• Consequently, it is necessary to remember
declarations so that we can detect inconsistencies
and misuses during type checking. This is the
task of a symbol table.

14

Symbol Table Entries

• What information do we need to put in an
entry for a variable in a Symbol Table?

15

Symbol Table Entries

• What information do we need to put in an
entry for a variable in a Symbol Table?

• Some obvious choices:
– Name
– Type
– Array? (then dimension information)
– Line Number (used in reporting errors)
– Scope (so we know when to deactivate it)
– Initialized? (for compile-time error checking)
– Memory Position (for compiling to Assembly)
– Others if we we're interpreting the code

16

Symbol Table Design

• Several data structures can be used for a
symbol table.
– Arrays
– Linked Lists
– Binary Tree
– Hash Table
– Hybrids

• Which are the best choices? Consider:
– Memory used
– Cost to Insert()
– Cost to LookUp()

17

Symbol Table Design

• Most compilers use
– Hash table

• Hash is often a simple function of symbol string

– Each Hash Bucket has a linked list to resolve
conflicts

• Our MiniJava compiler uses such a system

18

The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components:
• Symbol table (already discussed)
• Constant table

– Representation, type
– Storage class, offset

• Storage map
– Overall storage layout
– Overlap information
– Virtual register assignments

• Others?

