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Intermediate Representations
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IR in compilers

• Internal representation of input program by 
compilers
– Computation expressed in the input program
– Results of program analysis

• Control-flow graphs, data-flow graphs, dependence graphs
– Symbol tables

• Book-keeping information for translation (eg., types and 
addresses of variables and subroutines)

• External format of IR
– Needs to be serialized
– Allows  independent passes over IR
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Intermediate Representations

• Decisions in IR design affect the speed and efficiency of 
the compiler

• Some important IR properties
– Ease of generation

– Ease of manipulation

– Procedure size
– Freedom of expression

– Level of abstraction

• The importance of different properties varies between 
compilers

• Selecting an appropriate IR for a compiler is critical
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Types of Intermediate Representations

Three major categories
• Structural

– Graphically oriented
– Heavily used in source-to-source translators, program 

correctness tools
– Tend to be large
– Examples: Trees, DAGs

• Linear
– Pseudo-code for an abstract machine
– Level of abstraction varies
– Simple, compact data structures
– Easier to rearrange
– Examples: 3 address code, Stack machine code

• Hybrid
– Combination of graphs and linear code
– Example: control-flow graph
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Level of Abstraction

• The level of detail exposed in an IR influences the 
profitability and feasibility of different optimizations.

• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1
sub   rj, r1 => r2
loadI 10 => r3
mult r2, r3 => r4
sub   ri, r1 => r5
add   r4, r5 => r6
loadI @A => r7
Add   r7, r6 => r8
load  r8 => rAij

High level AST:
Good for memory 

disambiguation
Low level linear code:
Good for address calculation
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Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with the 
nodes for most non-terminal nodes removed
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Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique 
node for each value

• Makes sharing explicit
• Encodes redundancy
• Same expression twice means that the compiler 

might arrange to evaluate it just once!
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z ← x - 2 * y
w ← x + 2 * y
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Stack Machine Code
Originally used for stack-based computers, now Java 

and C#
• Example:

x - 2 * y =>    

Advantages
• Compact form

• Introduced names are implicit, not explicit
• Simple to generate and execute code

• Useful where code is transmitted over slow communication links 
(e.g., the net )

push x
push 2
push y
multiply
subtract
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Three Address Code

Several different representations of three address code
• In general, three address code has statements of the form:

x ← y op z
With 1 operator (op ) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * y =>

Advantages:
• Resembles many machines

• Introduces a new set of names (the temp results)

• Compact form

t1 ← 2 * y
z ← x – t1
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Three Address Code: Quadruples

Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

245sub

X4load

123mult

22loadi

Y1load

load  r1, y
loadIr2, 2
mult r3, r2, r1
load  r4, x
sub   r5, r4, r3

RISC assembly code Quadruples
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Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub

xload

(2)(1)mult

2load

yload(1)

(2)

(3)

(4)

(5)
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Implementation of MiniJava Compiler 
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Symbol Tables

• After ASTs have been constructed, the compiler 
must check whether the input program is type-
correct. During this type checking, a compiler 
checks whether the use of names (such as 
variables, functions, type names) is consistent 
with their definition in the program. 

• Consequently, it is necessary to remember 
declarations so that we can detect inconsistencies 
and misuses during type checking. This is the 
task of a symbol table. 
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Symbol Table Entries

• What information do we need to put in an 
entry for a variable in a Symbol Table? 
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Symbol Table Entries

• What information do we need to put in an 
entry for a variable in a Symbol Table? 

• Some obvious choices: 
– Name
– Type 
– Array?  (then dimension information)
– Line Number (used in reporting errors) 
– Scope (so we know when to deactivate it)
– Initialized? (for compile-time error checking)
– Memory Position (for compiling to Assembly)
– Others if we we're interpreting the code
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Symbol Table Design

• Several data structures can be used for a 
symbol table. 
– Arrays
– Linked Lists
– Binary Tree 
– Hash Table 
– Hybrids

• Which are the best choices?  Consider:
– Memory used
– Cost to Insert()
– Cost to LookUp()
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Symbol Table Design

• Most compilers use
– Hash table

• Hash is often a simple function of symbol string

– Each Hash Bucket has a linked list to resolve 
conflicts

• Our MiniJava compiler uses such a system
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The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components:
• Symbol table (already discussed)
• Constant table

– Representation, type
– Storage class, offset

• Storage map
– Overall storage layout
– Overlap information
– Virtual register assignments

• Others?


