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CSE401 – Additional Topics

• Compiler construction – what’s missing
• Binary optimization techniques
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CSE401 - What you’re missing

• Size and scope of what can be covered in 10 
weeks is far too small to get any real sense of 
software development issues:
– Engineering requirements

• Task breakdown
• Interface design
• Technical documentation
• Test plans

– Team skills
• Communication issues
• Adapting to change
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What you’re missing (cont.)

• Typically, your MiniJava project has two team 
members and adds up to a 1000 lines of code to an 
existing system of about 10000 source lines 
(10 KLOCS)

• A comparison of some software systems:
Code Base KLOCs
MiniJava 10
Microsoft C/C++ Backend 500
Windows NT 3.5 10000
Windows 2000 29000
Red Hat Linux 7.1 30000
Windows XP 40000
Windows Vista 50000
Mac OS X 1.4 86000 
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What you’re missing (cont.)

• This doesn’t mean that the C/C++ compiler is 50 
times more complicated than MiniJava.
– The various sub-phases are insulated from each other with 

well defined interfaces, but it is significantly more complex.

• It does mean that a production compiler it is about 50 
times harder to build!

• That particular project was approximately 40-50 man 
years of effort; i.e., about 15 people for 3 years.
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What you’re missing (cont.)

• Another significant difference between CSE401 
and production compilation systems is in 
performance and capacity.
– Need to be able to compile codes listed above in a 

reasonable amount of time.
– Need to be accurate. 
– Need to be reliable.
– Need to be maintainable.
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Binary Optimization

These systems are also known as Post-Link 
Optimizers.

The basic idea:
• Read in a compiled binary
• Decompile to IR
• Perform a series of optimizations
• Rewrite the binary file back out
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Why?

• Modern computer performance is dominated 
by cost to read/write memory.

• Often, one of the largest users of memory 
bandwidth is the program itself.

• Analyzing the program at the binary level 
actually simplifies the process of 
understanding program control flow, 
instruction cache use and working-set 
requirements. 
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Binary Optimization Process

• Build base version of target binary.
• Instrument base version to add profile data 

collection code.
• Run instrumented version over selected test 

cases capturing profile data.  This sometimes 
referred to as ‘training’ runs. 

• Run binary optimizer using base version of 
executable and profile data as input. This will 
produce an optimized binary.

• Test and ship optimized binary.
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Binary Optimizations

• Many optimizations depend on getting profile 
data from running the application.  This data is 
then analyzed off-line to:

– Reorder code to reduce instruction cache paging
– Reorder code to reduce working set
– Reorder code to reduce branch penalties
– Rearrange static data and resource sections for 

additional paging improvements
– Procedure inlining
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Binary Optimizations
code reordering
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Binary Rewriting System

• Once you have a system for reading and 
rewriting binaries there are other cool things 
you can do:

– Build instrumentation and tools to collect a variety 
of program data.

– Do code coverage testing.  Inject additional test 
code into binaries for error case testing.

– Modify binaries to take advantage of changes in 
hardware architecture.


