CSE401 — Additional Topics

CSE401 — Additional Topics

» Compiler construction — what's missing
* Binary optimization techniques

CSE401 - What you're missing

¢ Size and scope of what can be covered in 10
weeks is far too small to get any real sense of
software development issues:
— Engineering requirements
* Task breakdown
« Interface design
 Technical documentation
* Test plans

— Team skills
» Communication issues
» Adapting to change

What you’re missing (cont)

« Typically, your MiniJava project has two team
members and adds up to a 1000 lines of code to an
existing system of about 10000 source lines
(10 KLOCS)

* A comparison of some software systems:

Code Base KLOCs
MiniJava 10
Microsoft C/C++ Backend 500
Windows NT 3.5 10000
Windows 2000 29000
Red Hat Linux 7.1 30000
Windows XP 40000
Windows Vista 50000
Mac OS X 1.4 86000

What you’re missing (cont)

* This doesn’t mean that the C/C++ compiler is 50
times more complicated than MiniJava.
— The various sub-phases are insulated from each other with
well defined interfaces, but it is significantly more complex.
« It does mean that a production compiler it is about 50
times harder to build!

« That particular project was approximately 40-50 man
years of effort; i.e., about 15 people for 3 years.

What you’re missing (cont)

Another significant difference between CSE401
and production compilation systems is in
performance and capacity.

— Need to be able to compile codes listed above in a
reasonable amount of time.

— Need to be accurate.
— Need to be reliable.
— Need to be maintainable.




Binary Optimization

These systems are also known as Post-Link
Optimizers.

The basic idea:

* Read in a compiled binary

* Decompile to IR

« Perform a series of optimizations
« Rewrite the binary file back out

Why?

* Modern computer performance is dominated
by cost to read/write memory.

« Often, one of the largest users of memory
bandwidth is the program itself.

¢ Analyzing the program at the binary level
actually simplifies the process of
understanding program control flow,
instruction cache use and working-set
requirements.

Binary Optimization Process

« Build base version of target binary.

« Instrument base version to add profile data
collection code.

* Run instrumented version over selected test
cases capturing profile data. This sometimes
referred to as ‘training’ runs.

« Run binary optimizer using base version of
executable and profile data as input. This will
produce an optimized binary.

 Test and ship optimized binary.

Binary Optimizations

« Many optimizations depend on getting profile
data from running the application. This data is
then analyzed off-line to:

— Reorder code to reduce instruction cache paging

— Reorder code to reduce working set

— Reorder code to reduce branch penalties

— Rearrange static data and resource sections for
additional paging improvements

— Procedure inlining

10

Binary Optimizations

code reordering
b b3

11

Binary Rewriting System

« Once you have a system for reading and
rewriting binaries there are other cool things
you can do:

— Build instrumentation and tools to collect a variety
of program data.

— Do code coverage testing. Inject additional test
code into binaries for error case testing.

— Modify binaries to take advantage of changes in
hardware architecture.




