
1

CSE401 – Additional Topics

2

CSE401 – Additional Topics

• Compiler construction – what’s missing
• Binary optimization techniques

3

CSE401 - What you’re missing

• Size and scope of what can be covered in 10
weeks is far too small to get any real sense of
software development issues:
– Engineering requirements

• Task breakdown
• Interface design
• Technical documentation
• Test plans

– Team skills
• Communication issues
• Adapting to change

4

What you’re missing (cont.)

• Typically, your MiniJava project has two team
members and adds up to a 1000 lines of code to an
existing system of about 10000 source lines
(10 KLOCS)

• A comparison of some software systems:
Code Base KLOCs
MiniJava 10
Microsoft C/C++ Backend 500
Windows NT 3.5 10000
Windows 2000 29000
Red Hat Linux 7.1 30000
Windows XP 40000
Windows Vista 50000
Mac OS X 1.4 86000

5

What you’re missing (cont.)

• This doesn’t mean that the C/C++ compiler is 50
times more complicated than MiniJava.
– The various sub-phases are insulated from each other with

well defined interfaces, but it is significantly more complex.

• It does mean that a production compiler it is about 50
times harder to build!

• That particular project was approximately 40-50 man
years of effort; i.e., about 15 people for 3 years.

6

What you’re missing (cont.)

• Another significant difference between CSE401
and production compilation systems is in
performance and capacity.
– Need to be able to compile codes listed above in a

reasonable amount of time.
– Need to be accurate.
– Need to be reliable.
– Need to be maintainable.

2

7

Binary Optimization

These systems are also known as Post-Link
Optimizers.

The basic idea:
• Read in a compiled binary
• Decompile to IR
• Perform a series of optimizations
• Rewrite the binary file back out

8

Why?

• Modern computer performance is dominated
by cost to read/write memory.

• Often, one of the largest users of memory
bandwidth is the program itself.

• Analyzing the program at the binary level
actually simplifies the process of
understanding program control flow,
instruction cache use and working-set
requirements.

9

Binary Optimization Process

• Build base version of target binary.
• Instrument base version to add profile data

collection code.
• Run instrumented version over selected test

cases capturing profile data. This sometimes
referred to as ‘training’ runs.

• Run binary optimizer using base version of
executable and profile data as input. This will
produce an optimized binary.

• Test and ship optimized binary.

10

Binary Optimizations

• Many optimizations depend on getting profile
data from running the application. This data is
then analyzed off-line to:

– Reorder code to reduce instruction cache paging
– Reorder code to reduce working set
– Reorder code to reduce branch penalties
– Rearrange static data and resource sections for

additional paging improvements
– Procedure inlining

11

Binary Optimizations
code reordering

b1

b2

b3

b4

b5

jcc b3

jmp b4

jmp b5

b1

b3

b5

b2

b4

jNcc b2

jmp b4

(jmp b5)

hot

cold

12

Binary Rewriting System

• Once you have a system for reading and
rewriting binaries there are other cool things
you can do:

– Build instrumentation and tools to collect a variety
of program data.

– Do code coverage testing. Inject additional test
code into binaries for error case testing.

– Modify binaries to take advantage of changes in
hardware architecture.

