
1

1

CSE 401 Introduction to Compiler
Construction

Ruth Anderson & Mark Roberts
Winter 2008

2

Today’s Outline

• Administrative Info
• Overview of the Course

3

CSE 401: Intro to Compiler Construction

Goals
– Learn principles and practice of language translation

• Bring together theory and pragmatics of previous classes

• Understand compile-time vs run-time processing

– Study interactions among
• Language features
• Implementation efficiency

• Compiler complexity

• Architectural features

– Gain more experience with OO design
– Gain more experience with working in a team

– Gain experience working with SW someone else wrote
4

Course Info

• Prerequisites: 303, 322, 326, 341, 378

• Text: Engineering a Compiler, Cooper and
Torczon, Morgan-Kaufmann 2004

• Course Web is the place to look for
materials:
– Lecture Slides
– Archive of course mailing list
– Message Board
– Homework and Project assignments

5

Staff

• Instructors
– Ruth Anderson (rea@cs.washington.edu)
– Mark Roberts (markro@cs.washington.edu)

• Teaching Assistant
– Jonathan Beall (jibb@cs.washington.edu)

6

CSE 401 E-mail List

• Used for important announcements from
instructors and TA.

• You are responsible for anything sent here.

• If you are registered for the course you will be
automatically added to the list.

• Emails will be sent to your @u.washington.edu
address.

• Emails will also be archived on the course web
page.

2

7

CSE 401 Discussion Board

• The course will have a Catalyst GoPost
message board.

• Students and Instructors can post and reply
to posts.

• Please use this!!
• Use:

– General discussion of class contents
– Hints and ideas about assignments (but not

detailed code or solutions)
– Other topics related to the course

8

Evaluation

• Grading:
– Compiler Project 40%
– Written Homework 15%
– Midterm Exam 15%
– Final Exam 25%
– Class Participation 5%

• Late policy:
– Each student has three late days to use over the course of

the quarter.
– Beyond that, 25% penalty for each calendar day it is late.
– Assignments are due at the start of class, unless otherwise

noted.

9

Academic Conduct

• Written Homework: to be done individually
• Compiler Project: to be done with a partner

• Things that are academic mis-conduct: (cheating)
– Sharing solutions, doing work for others, accepting work

from others

– Searching for solutions on the web

– Consulting or copying solutions to assignments or projects
from previous offerings of this or other courses

10

Policy on collaboration

• “Gilligan’s Island” rule:
– You may discuss problems with your classmates

to your heart's content.
– After you have solved a problem, discard all

written notes about the solution.
– Go watch TV for a ½ hour (or more). Preferably

Gilligan's Island.
– Then write your solution.

11

Homework for Today!!

1) Reading for this week: (in Cooper & Torczon)
Chapter 1 (all), 2.1-2.4

2) Information Sheet: Bring to lecture by Friday (1/11)
3) Homework #1 (Due 1/16): See course web page.
4) Compiler Project: See course web page.

1) Read Project Overview
2) Read Project #1 Description
3) Project Partners (Due 1/16)

12

Ruth Anderson

• Grad Student at UW (Programming Languages,
Compilers, Parallel Computing)

• Taught Computer Science at the University of Virginia for
5 years

• Grad Student at UW (Educational Technology, Pen
Computing)

• Defended my PhD last fall

3

13

Mark Roberts

• BS Math at UW
• MS Computer Science at UCLA
• Worked over 30 years building compilers

and related development tools
• Last 19 years at Microsoft in a variety of positions:

– Development manager of compiler backend team

– Development manager of Visual Basic for Applications (VBA)

– Manager of Binary Optimization Group

• Card carrying member of ACM and ACE

14

Bring to Class by Friday:

• Name
• Email address
• Year (1,2,3,4)
• Major
• Hometown
• Interesting Fact or what

I did over
summer/winter break.

15

Course Overview

16

Course Project
• Start with a MiniJava complier in Java …

improve it
– Add:

• Comments
• Floating-point values
• Arrays
• Static (class) variables
• For loops
• Break Statements
• … And more

– Completed in stages over the term
– Strongly encouraged: Work in teams, but only if

joint work, not divided work

Grading Basis
•Correctness
•Clarity of design/impl
•Quality of test cases

17

Compiler Passes
Analysis

of input program
(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

18

Example Compilation
Sample (extended) MiniJava program: Factorial.java
// Computes 10! and prints it out

class Factorial {
public static void main(String[] a) {

System.out.println(
new Fac().ComputeFac(10));

}
}

class Fac {

// the recursive helper function
public int ComputeFac(int num) {

int numAux;
if (num < 1)

numAux = 1;
else numAux = num * this.ComputeFac(num-1);

return numAux;
}

}

4

19

First Step: Lexical Analysis

“Scanning”, “tokenizing”
Read in characters, clump into tokens
– strip out whitespace & comments in the process

20

Specifying tokens: Regular Expressions

Example:
Ident ::= Letter AlphaNum*
Integer ::= Digit+
AlphaNum ::= Letter | Digit
Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z'
Digit ::= '0' | ... | '9'

21

Second Step: Syntactic Analysis

“Parsing” -- Read in tokens, turn into a tree
based on syntactic structure
– report any errors in syntax

22

Specifying Syntax: Context-free
Grammars

EBNF is a popular notation for CFG’s
Example:
Stmt ::= if (Expr) Stmt [else Stmt]

| while (Expr) Stmt
| ID = Expr;
| ...

Expr ::= Expr + Expr | Expr < Expr | ...
| ! Expr
| Expr . ID ([Expr {, Expr}])
| ID
| Integer
| (Expr)
| ...

EBNF specifies concrete syntax of language; parser constructs tree
of the abstract syntax of the language

23

Third Step: Semantic Analysis
“Name resolution and type checking”
• Given AST:

– figure out what declaration each name refers to
– perform type checking and other static consistency checks

• Key data structure: symbol table
– maps names to info about name derived from declaration
– tree of symbol tables corresponding to nesting of scopes

• Semantic analysis steps:
1. Process each scope, top down
2. Process declarations in each scope into symbol table for

scope
3. Process body of each scope in context of symbol table

24

Fourth Step: Intermediate Code Gen

• Given annotated AST & symbol tables, translate into
lower-level intermediate code

• Intermediate code is a separate language
– Source-language independent
– Target-machine independent

• Intermediate code is simple and regular
– Good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

5

25

Example
Int Fac.ComputeFac(*? this, int num) {

int t1, numAux, t8, t3, t7, t2, t6, t0;

t0 := 1;

t1 := num < t0;

ifnonzero t1 goto L0;

t2 := 1;

t3 := num - t2;

t6 := Fac.ComputeFac(this, t3);

t7 := num * t6;

numAux := t7;

goto L2;

label L0;

t8 := 1;

numAux := t8

label L2;

return numAux

}
26

Fifth Step: Optimization

Identify inefficiencies in intermediate or target code
Replace with equivalent but better sequences
• equivalent => "has the same externally visible behavior"

Target-independent optimizations best done on IL code
Target-dependent optimizations best done on target code
“Optimize” overly optimistic
• Optimize => “usually improve”

Scope of study for optimizations:
• Peephole, local, global (intraprocedural) and interprocedural

• Larger scope => better optimization but more cost and complexity

27

Sixth Step: Target Machine Code Gen

Translate intermediate code into target code
• Need to do:

– Instruction selection: choose target instructions for
(subsequences) of IR instructions

– Register allocation: allocate IR code variables to
registers, spilling to memory when necessary

– Compute layout of each procedures stack frames
and other runtime data structures

– Emit target code

