
1

1

Abstract Syntax Trees

The parser’s output is an abstract syntax tree
(AST) representing the grammatical structure of
the parsed input.

But first a digression.

2

Intermediate Representations

• Front end - produces an intermediate
representation (IR)

• Middle end - transforms the IR into an equivalent
IR that runs more efficiently (usually consists of
several passes)

• Back end - transforms the IR into native code
• The IR encodes the compiler’s knowledge of the

program at any point in time

Front

End

Middle

End

Back

End

IR IRSource
Code

Target
Code

3

Typical Implementation of a Compiler

Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code

Generator

Code Optimizer

Back end

Target

Program

Tokens

Abstract syntax tree

AST and symbol

tables

IR

IR

4

Abstract Syntax Trees

• The parser’s output is an abstract syntax tree
(AST) representing the grammatical structure
of the parsed input

• ASTs represent only semantically meaningful
aspects of input program, unlike concrete
syntax trees which record the complete textual
form of the input
– There’s no need to record keywords or punctuation

like () , ; , else

– The rest of compiler only cares about the abstract
structure

5

Concrete Syntax vs. Abstract Syntax

• Concrete syntax: what the programmer wrote
=> Parse Tree

• Abstract syntax: what the compiler needs
=> Abstract Syntax Tree

6

Parse trees and abstract syntax trees

• Graphically represent grammatical structure of input program
– Parse tree: tree representation of grammar derivation
– AST: condensed form of parse tree

• Operators and keywords do not appear as leaves
• Chains of single productions are collapsed

If-then-else

B S1 S2

S

IF B THEN S1 ELSE S2

E

E + T

5T

3

+

3 5

Parse trees Abstract syntax trees

2

7

AST Class Hierarchy

• AST classes are organized into an inheritance
hierarchy based on commonalities of meaning and
structure

• Each "abstract non-terminal" that has multiple
alternative concrete forms will have an abstract class
that’s the superclass of the various alternative forms
– Stmt is abstract superclass of IfStmt , AssignStmt , etc.

– Expr is abstract superclass of AddExpr , VarExpr , etc.

– Type is abstract superclass of IntType , ClassType , etc.

8

AST Node Classes

Each node in an AST is an instance of an AST class
– IfStmt , AssignStmt , AddExpr , VarDecl , etc.

Each AST class declares its own instance variables
holding its AST subtrees
– IfStmt has testExpr , thenStmt , and elseStmt

– AssignStmt has lhsVar and rhsExpr

– AddExpr has arg1Expr and arg2Expr

– VarDecl has typeExpr and varName

9

Notes on MiniJava Project

10

Automatic Parser Generation in MiniJava

We use the CUP tool to automatically create a parser
from a specification file, Parser/minijava.cup

The MiniJava Makefile automatically rebuilds the parser
whenever its specification file changes

A CUP file has several sections:
– introductory declarations included with the generated parser
– declarations of the terminals and nonterminals with their

types
– The AST node or other value returned when finished parsing

that nonterminal or terminal
– precedence declarations
– productions + actions

11

Terminal and Nonterminal Declarations
Terminal declarations we saw before:

/* reserved words: */

terminal CLASS, PUBLIC, STATIC, EXTENDS;
...

/* tokens with values: */
terminal String IDENTIFIER;

terminal Integer INT_LITERAL;

Nonterminals are similar:
nonterminal Program Program;
nonterminal MainClassDecl MainClassDecl;

nonterminal List/*<...>*/ ClassDecls;
nonterminal RegularClassDecl ClassDecl;

...

nonterminal List/*<Stmt>*/ Stmts;
nonterminal Stmt Stmt;

nonterminal List/*<Expr>*/ Exprs;
nonterminal List/*<Expr>*/ MoreExprs;

nonterminal Expr Expr;
nonterminal String Identifier;

12

Precedence Declarations
Can specify precedence and associativity of operators

– equal precedence in a single declaration
– lowest precedence textually first
– specify left, right, or nonassoc with each declaration

Examples:
precedence left AND_AND;

precedence nonassoc EQUALS_EQUALS,
EXCLAIM_EQUALS;

precedence left LESSTHAN, LESSEQUAL,
GREATEREQUAL, GREATERTHAN;

precedence left PLUS, MINUS;
precedence left STAR, SLASH;

precedence left EXCLAIM;

precedence left PERIOD;

3

13

Productions
All of the form:

LHS ::= RHS1 {: Java code 1 :}

| RHS2 {: Java code 2 :}

| ...

| RHSn {: Java code n :};

Can label symbols in RHS with:var suffix to refer to its
result value in Java code

• varleft is set to line in input where var symbol was

E.g.: Expr ::= Expr:arg1 PLUS Expr:arg2

{: RESULT = new AddExpr(arg1,arg2,arg1left);:}

| INT_LITERAL:value{: RESULT = new IntLiteralExpr(
value.intValue(),valueleft);:}

| Expr:rcvr PERIOD Identifier:message OPEN_PAREN
Exprs:args CLOSE_PAREN

{: RESULT = new MethodCallExpr(

rcvr,message,args,rcvrleft);:}

| ... ;
14

AST Extensions For Project
New variable declarations:

– StaticVarDecl

New types:
– DoubleType

– ArrayType

New/changed statements:
– IfStmt can omit else branch
– ForStmt

– BreakStmt

– ArrayAssignStmt

New expressions:
– DoubleLiteralExpr

– OrExpr

– ArrayLookupExpr
– ArrayLengthExpr

– ArrayNewExpr

15

Extra Slides Start Here

16

Error Handling

How to handle syntax error?
Option 1: quit compilation

+ easy
- inconvenient for programmer

Option 2: error recovery
+ try to catch as many errors as possible on one compile
- difficult to avoid streams of spurious errors

Option 3: error correction
+ fix syntax errors as part of compilation
- hard!!

17

Panic Mode Error Recovery
When finding a syntax error, skip tokens until reaching a

“landmark”
• landmarks in MiniJava: ;,), }
• once a landmark is found, hope to have gotten back on track

In top-down parser, maintain set of landmark tokens as
recursive descent proceeds

• landmarks selected from terminals later in production
• as parsing proceeds, set of landmarks will change, depending

on the parsing context

In bottom-up parser, can add special error
nonterminals, followed by landmarks

• if syntax error, then will skip tokens till seeing landmark, then
reduce and continue normally

• E.g. Stmt ::= ... | error ; | { error }

Expr ::= ... | (error)

