
Project 5: Extensions to the MiniJava
Compiler
Due: Thursday, March 13, 11:59pm.

In this assignment you will make two required extensions to the target code generator.
You will also make an extension to the MiniJava compiler of your own choosing.

Part A: Immediate Operands

Modify the x86 target code generator so that it can generate immediate operands for
integer constant arguments, rather than moving the integer constant to a register and then
using that register. For example, for MiniJava source like x+1, instead of generating the
following x86 target code:

movl %ebi(xoffset), %eax // load x from stack
movl $1, %ebx // move constant 1 into register
addl %ebx, %eax // compute x+1

your modified compiler should generate the following:
movl %ebi(xoffset), %eax // load x from stack
addl $1, %eax // compute x+1

Your compiler should be able to perform this optimization whenever the first operand of
a 2-argument x86 arithmetic, comparison, or move instruction, or the operand of a push
instruction, might be an integer constant. In the current x86 target code generator, this
includes whenever the right-hand side of an assignment, the argument of the int-to-
double unary operator, the length of an arrayed allocation, the second argument of a non-
divide integer binary expression, the second argument of an integer compare expression,
and an argument of a call is an integer constant expression.

To perform this optimization, I recommend that you define an alternative version of
codegen, e.g. codegenOrImmediate, which is invoked by methods in
X86Target for any argument subexpressions that are allowed to be immediate
operands. By default, codegenOrImmediate just does codegen, but for an
ILIntConstantExpr, codegenOrImmediate invokes a special emit operation on
the target, e.g. emitIntConstantOrImmediate, passing the value of the integer
constant. This operation is implemented for the x86 to return a special immediate
location, e.g. X86IntImmediateLocation, which remembers the constant. (Other
targets implement this operation in their own way, to account for that target's treatment of
immediate operands. It is always safe for a target to implement
emitIntConstantOrImmediate just as emitIntConstant.) Finally, for those
operands that allow immediates as an alternative to registers, the call to the
regOperand helper can be replaced with a new regOrIntOperand helper, which

tests the kind of location passed and invokes either regOperand (if the location is an
X86Register) or intOperand (if the location is an
X86IntImmediateLocation). To help monitor when the optimization is
performed, the code for emitIntConstantOrImmediate can emit a comment
indicating that the regular emitIntConstant code was optimized away. (This
design, using two versions of codegen and different kinds of result locations, is analogous
to how boolean-valued expressions can be code-generated in two different ways,
depending on whether the result is being consumed by a conditional branch instruction or
not.)

Develop test cases that demonstrate that your optimization is performed when it should
be, and not performed when it shouldn't be. (You should also confirm that the existing
sample programs continue to run correctly with your optimization enabled.) You can use
the -printCode option to the MiniJava compiler to print out the assembly code that it
produces.

Part B: Improved Register Allocation

Modify the x86 target code generator to eliminate redundant loads from stack locations
for variables. For example, for MiniJava source like x+x, instead of generating the
following x86 target code:

movl %ebi(xoffset), %eax // load x from stack
movl %ebi(xoffset), %ebx // load x from stack
addl %ebx, %eax // compute x+x

your modified compiler should generate the following:

movl %ebi(xoffset), %eax // load x from stack
movl %eax, %ebx // copy x from existing register location
addl %ebx, %eax // compute x+x

Likewise, for MiniJava source like x=...; ...x..., instead of generating the
following x86 target code:

movl %eax, %ebi(xoffset) // store x to stack
movl %ebi(xoffset), %ebx // load x from stack

your modified compiler should generate the following:

movl %eax, %ebi(xoffset) // store x to stack
movl %eax, %ebx // copy x from existing register location

Your modified compiler should be able to replace loads from a variable's home stack
location with a register move instruction whenever the variable's value has already been
loaded into or stored from a register earlier in the same basic block (or more generally

from the same trace back to the previous label statement or function entry) as long as the
register hasn't been reallocated to some other value.

To implement this optimization, I suggest that you add an instance variable to the
X86Target class that stores a map from stack offsets to register locations. The
invariant of this map is that, whenever an offset maps to a register location, then that
register holds the same value as the stack at that offset. You can define several helper
functions for manipulating this map: clearStackContents() which resets the map
to the empty map, forgetStackContents(Location) which drops any mappings
for the given location, lookupStackContents(int offset) which returns the
register location holding the contents of the stack at the given offset, or null of none, and
recordStackContents(int offset, Location) which remembers that the
given register location holds the contents of the stack at the given offset. These helpers
can then be called to manipulate the map at the right places:

• in the function prologue and at label statements: clear the map
• at variable assignments: update the mapping
• at variable reads:

o first try to generate a move instead of a load by checking whether a
mapping exists (and printing a comment if successful)

o if none exists, generate the load and then record that the result register
now holds the loaded stack location

• whenever a register is allocated (in the two allocateRegister methods) or
overwritten (in the emitSimpleIntBinop, emitSimpleIntUnop, and
restoreRegisters methods): forget the mapping, if present

Develop test cases that demonstrate that your optimization is performed when it should
be, and not performed when it shouldn't be. (You should also confirm that the existing
sample programs continue to run correctly with your optimization enabled.) You can use
the -printCode option to the MiniJava compiler to print out the assembly code that it
produces.

Part C: Your Own Extension

Choose some interesting extension to make to the MiniJava compiler, design and
implement it, and develop test cases that demonstrate your new extension. Some possible
extensions include the following:

• a new code generation target, e.g. a C source code target, or a MIPS, Sparc, or
PowerPC assembly target

• an intraprocedural optimization, e.g. constant propagation and folding, or dead
assignment elimination, or real intraprocedural register allocation

• a new MiniJava language feature, e.g. a foreach construct, or labeled break and
continue statements, or allowing methods to be marked protected and/or private

with appropriate access checking, or exception throwing and catching, or switch
statements, or parameterized types (aka generics)

• a MiniJava library extension, e.g. introducing an Object predefined class, perhaps
with some predefined methods that can be inherited by all other classes, perhaps
allowing arrays to be subtypes of object, too

• a new runtime facility, e.g. real garbage collection or execution profiling

Only simple extensions are required for the project, but more interesting (and difficult)
extensions can earn (modest amounts of) extra credit.

Each project team should talk to Mark or Ruth about their plans for their extension, to
make sure that it's not too simple nor too difficult.

You should explain your extension in a separate text file.

Turn in the following:

1. Your new and/or modified source files. Clearly identify any modifications to
existing files using comments.

2. The text file explaining your extension.
3. Your test cases that demonstrate the correctness of your extensions
4. A transcript of running your compiler with flags appropriate for demonstrating the

correctness of your extensions.

As with the last project, name your root project directory MiniJava, and submit the
directory. Put your test programs in the SamplePrograms directory. Zip it up and submit
by the deadline.

