Project 5: Extensionsto the MiniJava
Compiler
Due: Thursday, March 13, 11:59pm.

In this assignment you will make two required estens to the target code generator.
You will also make an extension to the MiniJava pder of your own choosing.

Part A: Immediate Operands

Modify the x86 target code generator so that it gamerate immediate operands for
integer constant arguments, rather than movingntieger constant to a register and then
using that register. For example, for MiniJava seuikex+1, instead of generating the
following x86 target code:

nmovl %ebi (xof fset), %ax // load x from stack
movl $1, %ebx /1 nmove constant 1 into register
addl %sbx, %ax /1 conpute x+1

your modified compiler should generate the follogvin
nmovl %ebi (xof fset), %ax // load x from stack
addl $1, %ax /] conmpute x+1

Your compiler should be able to perform this opaation whenever the first operand of
a 2-argument x86 arithmetic, comparison, or mosé&irction, or the operand of a push
instruction, might be an integer constant. Indcheent x86 target code generator, this
includes whenever the right-hand side of an assaginthe argument of the int-to-
double unary operator, the length of an arrayestation, the second argument of a non-
divide integer binary expression, the second arguiroan integer compare expression,
and an argument of a call is an integer constgortession.

To perform this optimization, | recommend that ymfine an alternative version of
codegen, e.g.codegenOr | mredi at e, which is invoked by methods in

X86Tar get for any argument subexpressions that are allowé@ immediate
operands. By default,odegenOr | mredi at e just doexodegen, but for an

| LI nt Const ant Expr,codegenOr | mredi at e invokes a special emit operation on
the target, e.gem t | nt Const ant Or | nmedi at e, passing the value of the integer
constant. This operation is implemented for the tB&turn a special immediate
location, e.gX86I nt | nredi at eLocat i on, which remembers the constant. (Other
targets implement this operation in their own wayaccount for that target's treatment of
immediate operands. It is always safe for a taxenhplement

em t | nt Const ant O | rmedi at e just asem t | nt Const ant .) Finally, for those
operands that allow immediates as an alternativedisters, the call to the

r egOper and helper can be replaced with a neagOr | nt Gper and helper, which

tests the kind of location passed and invokes eitegQper and (if the location is an
X86Regi st er) ori nt Qper and (if the location is an

X86I nt | nmedi at eLocat i on). To help monitor when the optimization is
performed, the code foem t | nt Const ant O | nmredi at e can emit a comment
indicating that the regulam t | nt Const ant code was optimized away. (This
design, using two versions of codegen and diffekerds of result locations, is analogous
to how boolean-valued expressions can be code-gteein two different ways,
depending on whether the result is being consumgeddonditional branch instruction or
not.)

Develop test cases that demonstrate that your gatiion is performed when it should
be, and not performed when it shouldn't be. (Yoausd also confirm that the existing
sample programs continue to run correctly with yoptimization enabled.) You can use
the- pri nt Code option to the MiniJava compiler to print out tresambly code that it
produces.

Part B: Improved Register Allocation

Modify the x86 target code generator to elimina#undant loads from stack locations
for variables. For example, for MiniJava sourée k+x, instead of generating the
following x86 target code:

novl %ebi (xof fset), %ax // load x from stack
nmovl %ebi (xof fset), %bx // load x from stack
addl %sbx, %ax /1 conmpute Xx+x

your modified compiler should generate the follogvin

novl %bi (xof fset), %ax // load x from stack

novl %ax, %ebx /1 copy x fromexisting register |ocation
addl %ebx, %ax /1 conmpute Xx+x
Likewise, for MiniJava source like=. . .; ... X...,instead of generating the

following x86 target code:

nmovl %eax, %ebi (xoffset) // store x to stack
nmovl %ebi (xof fset), %bx // load x from stack

your modified compiler should generate the follogvin

novl % ax, %ebi (xoffset) // store x to stack
novl %ax, %ebx /1 copy x fromexisting register |ocation

Your modified compiler should be able to replacad® from a variable's home stack
location with a register move instruction whenether variable's value has already been
loaded into or stored from a register earlier i $ame basic block (or more generally

from the same trace back to the previous labetistant or function entry) as long as the
register hasn't been reallocated to some otheevalu

To implement this optimization, | suggest that yaald an instance variable to the
X86Tar get class that stores a map from stack offsets t@teglocations. The
invariant of this map is that, whenever an offsapsito a register location, then that
register holds the same value as the stack aoffsat. You can define several helper
functions for manipulating this mapl ear St ackCont ent s() which resets the map
to the empty mag,or get St ackCont ent s(Locat i on) which drops any mappings
for the given location, ookupSt ackCont ent s(i nt of f set) which returns the
register location holding the contents of the staicthe given offset, or null of none, and
recordStackContents(int offset, Location) which remembers that the
given register location holds the contents of thelsat the given offset. These helpers
can then be called to manipulate the map at the places:

« in the function prologue and at label statemenésarahe map
- atvariable assignments: update the mapping
 at variable reads:
o firsttry to generate a move instead of a loadgcking whether a
mapping exists (and printing a comment if succedpsfu
o if none exists, generate the load and then redwidithe result register
now holds the loaded stack location
- whenever a register is allocated (in the a¥d ocat eRegi st er methods) or
overwritten (in theem t Si npl el nt Bi nop, eni t Si npl el nt Unop, and
r est or eRegi st er s methods): forget the mapping, if present

Develop test cases that demonstrate that your gatiion is performed when it should
be, and not performed when it shouldn't be. (Yoausd also confirm that the existing
sample programs continue to run correctly with yoptimization enabled.) You can use
the- pri nt Code option to the MiniJava compiler to print out tresambly code that it
produces.

Part C: Your Own Extension

Choose some interesting extension to make to timeJ&dra compiler, design and
implement it, and develop test cases that demdastoar new extension. Some possible
extensions include the following:

« anew code generation target, e.g. a C sourceteoget, or a MIPS, Sparc, or
PowerPC assembly target

- an intraprocedural optimization, e.g. constant pgagtion and folding, or dead
assignment elimination, or real intraproceduralgteg allocation

- anew MiniJava language feature, e.g. a foreachtnast, or labeled break and
continue statements, or allowing methods to be ethptotected and/or private

with appropriate access checking, or exceptionvthrg and catching, or switch
statements, or parameterized types (aka generics)

a MiniJava library extension, e.g. introducing dnj&€ot predefined class, perhaps
with some predefined methods that can be inhehiyeall other classes, perhaps
allowing arrays to be subtypes of object, too

a new runtime facility, e.g. real garbage collettiw execution profiling

Only simple extensions are required for the projleat more interesting (and difficult)
extensions can earn (modest amounts of) extratcredi

Each project team should talk to Mark or Ruth alibeir plans for their extension, to
make sure that it's not too simple nor too difficul

You should explain your extension in a separateftiex

Turn in the following:

1.

2.
3.
4.

Your new and/or modified source files. Clearly itilgnany modifications to
existing files using comments.

The text file explaining your extension.

Your test cases that demonstrate the correctnegsuofextensions

A transcript of running your compiler with flagsmppriate for demonstrating the
correctness of your extensions.

As with the last project, name your root projecediory MiniJava, and submit the
directory. Put your test programs in the SampleRrog directory. Zip it up and submit
by the deadline.

