
Project 4: The MiniJava Intermediate
Code Generator
Due: Thursday, February 28, 11:59 pm.

In this assignment you will extend the initial MiniJava intermediate code generator to
implement the extensions described in the course project description handout. This will
complete your extended MiniJava compiler!

You should implement the lower operations for all the new language constructs and
features in the extended MiniJava language. This includes inserting coercions from
integers to doubles wherever necessary, and for generating tests for null array references
and out-of-bounds array references and negative-sized array creations. To support
System.out.println on doubles, a new runtime function should be added to the
CodeGen/Runtime/runtime.c file. The lower operations should use the IL
classes defined in the IL subdirectory, but you should not make any changes to these IL
classes.

After lowering, your lowered IL program should be able to be translated into x86 target
code, which then compiles, links, and runs correctly. (The x86 code generator is already
fully implemented; you should not make any changes to it.)

In all cases, as long as the MiniJava language restrictions are satisfied, a MiniJava
program should compile into an executable program that then runs the same as the
equivalent Java program.

Do the following:

1. Add and/or modify classes in the AST and/or Typechecker subdirectories to
perform lowering, and modify the CodeGen/Runtime/runtime.c file to
include any new runtime functions you need. (You should not modify any files in
the IL or CodeGen subdirectories, other than the runtime.c file.)

2. Develop test cases that demonstrate that your extended compiler works properly,
both in cases that should now compile and run successfully and in cases that
should now compile successfully but throw exceptions when run. (Since
execution ends with the first exception, you'll likely need several excepting test
case files to test the different excepting cases.) You may assume that your test
cases pass all lexical, syntactic, and semantic checks, and you may assume that all
MiniJava constructs from the initial language (before your extensions) are
compiled and executed correctly; you only need to test compilation and execution

of the new language features. The SamplePrograms directory contains some
files that should compile and execute successfully after you make your changes;
some of the files should compile and execute successfully with the initial version
of the MiniJava compiler.

You can use the -lower -printIL options to the MiniJava compiler to just run the
lowering phase and print out the IL program that it produces. See the test_lowering
target in the Makefile for an example. You can use the -printCode option (the -
codegen option is the default) to the MiniJava compiler to run the full compiler and
print out the assembly code that it produces. See the test_codegen target in the
Makefile for an example, which also compiles the runtime.c file, runs the
assembler on the generated assembly file, links it with the compiled runtime.c file,
and finally runs the linked executable program. (This target should be run only on an x86
machine, so that the generated x86 assembly code can be compiled and run
successfully.) Feel free to make your own target(s) to make running the tests you like
easier and more mechanical.

Turn in the following:

1. Your new and/or modified AST/*.java, Typechecker/*.java, and/or
CodeGen/Runtime/runtime.c files. Clearly identify any modifications to
existing files using comments.

2. Your test cases, with names of the form name.legal.java for test cases that
should compile and run successfully and name.illegal.java for test cases
that should compile successfully but throw exceptions when run.

3. A transcript of running your intermediate code generator and printing out the
resulting IL program (not the final assembly code) on each of your test cases.

4. A transcript of running the compiled code for each of your test cases.

As with the last project, name your root project directory MiniJava, and submit the
directory. Put your test programs in the SamplePrograms directory. Zip it up and submit
it.

