Project 4: The MiniJava I ntermediate
Code Generator

Due: Thursday, February 28, 11:59 pm.

In this assignment you will extend the initial Miava intermediate code generator to
implement the extensions described in the coursegrdescription handout. This will
complete your extended MiniJava compiler!

You should implement theower operations for all the new language constructs and
features in the extended MiniJava language. Tluisidies inserting coercions from
integers to doubles wherever necessary, and fargeng tests for null array references
and out-of-bounds array references and negatiwstsimray creations. To support
System out . pri nt| non doubles, a new runtime function should be add¢de
CodeGen/ Runt i me/ runti nme. c file. Thel ower operations should use the IL
classes defined in theL subdirectory, but you should not make any chatgésese IL
classes.

After lowering, your lowered IL program should Hdeato be translated into x86 target
code, which then compiles, links, and runs corye¢iihe x86 code generator is already
fully implemented; you should not make any charigas)

In all cases, as long as the MiniJava languagectshs are satisfied, a MiniJava
program should compile into an executable progtaahthen runs the same as the
equivalent Java program.

Do the following:

1. Add and/or modify classes in tW&T and/orTypechecker subdirectories to
perform lowering, and modify thGodeGen/ Runt i me/ runt i ne. c file to
include any new runtime functions you need. (Yooutt not modify any files in
thel L or CodeGen subdirectories, other than thent i ne. c file.)

2. Develop test cases that demonstrate that your @stecompiler works properly,
both in cases that should now compile and run sstely and in cases that
should now compile successfully but throw exceiamen run. (Since
execution ends with the first exception, you'lelik need several excepting test
case files to test the different excepting casésu) may assume that your test
cases pass all lexical, syntactic, and semanticksh@nd you may assume that all
MiniJava constructs from the initial language (befgour extensions) are
compiled and executed correctly; you only neecksd tcompilation and execution

of the new language features. Tdenpl ePr ogr ans directory contains some

files that should compile and execute successéitlr you make your changes;
some of the files should compile and execute sstekyg with the initial version

of the MiniJava compiler.

You can use thel ower -printl L options to the MiniJava compiler to just run the
lowering phase and print out the IL program thardduces. See theest | oweri ng
target in thevakef i | e for an example. You can use ther i nt Code option (the-
codegen option is the default) to the MiniJava compileram the full compiler and
print out the assembly code that it produces. tBeeest _codegen target in the
Makef i | e for an example, which also compiles thent i ne. c file, runs the
assembler on the generated assembly file, link#htthe compiled unt i ne. c file,

and finally runs the linked executable program.igtarget should be run only on an x86
machine, so that the generated x86 assembly codieeceompiled and run
successfully.) Feel free to make your own target(snake running the tests you like
easier and more mechanical.

Turn in the following:

1. Your new and/or modifiedST/ *. j ava, Typechecker/ *. j ava, and/or
CodeGen/ Runt i me/ runti nme. c files. Clearly identify any modifications to
existing files using comments.

2. Your test cases, with names of the farame. | egal .] ava for test cases that
should compile and run successfully arvahe. i | | egal . j ava for test cases
that should compile successfully but throw exceysiorhen run.

3. Atranscript of running your intermediate code gat@ and printing out the
resulting IL program (not the final assembly code)each of your test cases.

4. A transcript of running the compiled code for ea€lyour test cases.

As with the last project, name your root projecediory MiniJava, and submit the
directory. Put your test programs in the SampleRnog directory. Zip it up and submit
it.

