Project 3: The MiniJava Typechecker

Due: Friday, February 15, 2008 at 11:59pm. (but why don’t you get it done before

then?)

In this assignment you will extend the initial Miava typechecker with the extensions
described in the course project description handout

You should complete the front-end processing fergktended MiniJava language,
checking any legality constraints not handled earh the scanning or parsing phases.
These include the following additions to the hiehaes in the Typechecker package:

Extend theResol vedType hierarchy to support thdoubl e type.

Extend theResol vedType hierarchy to support the array type constructor,
which stores its element type. The array type cangir follows structural type
equivalence rules. MiniJava restricts Java bynilegdi one array type to be a
subtype of another array type only when the twayatypes are equivalent.
Extend thevar | nt er f ace hierarchy to support static class variable
declarations.

You should implement typechecking for the new andiodified AST node classes,
including the following:

Allow static class variables to be declared, so tiney may be legally referenced
in variable reads and assignments.

Allow i f statements to omit the#l se clause.

Check that & or statement's loop index variable was previouslyated to be an
i nt, that its initialization and update expressioriame nt s, and that its test
expression returnsi@ool ean.

Check that &r eak statement only appears in the body @hal e orf or loop.
(You may change the interface of tient . t ypecheck operation to do this.)
Check that an o1 {) expression hasool ean operands.

Check that an array new expression has a size prégssion of type nt .

Check that an array length expression has an atiagxpression that's an array.
Check that an array lookup expression has an atlagxpression that's an array
and an index subexpression that's ah.

Check that an array assignment statement has ansarbexpression that's an
array, an index subexpression that's ah, and a right-hand-side expression
whose type is assignable to the array's elemeast typ

Allow i nt s to be assignable toubl es, including in regular assignments, in
array assignments, in parameter passing into aagdeg#imd in returning from a
method.

+ Allowthe+,-,*,/,<,<=>= > == and! = operations to also be applied to
doubl es, and, for binary operations, to mixed oft s anddoubl es.
« Allow the Syst em out . pri nt | n operation to also be applied taaubl e.

In all cases, as long as the MiniJava restrictemessatisfied, a MiniJava expression
should have the same result type as the equivadeat expression.

You only need to get the compiler front-end to wofku do not need to implement any
back-end lowering or code generation.

Do the following:

1. Add and/or modify classes in the AST and Typecheskbdirectories to
typecheck the extended language.

2. Develop test cases that demonstrate that your @stetypechecker works, both
in cases that should now be legal and in casesiioatid be syntactically legal
but semantically illegal. (Since the typecheckatsat the first error, you'll likely
need several illegal test case files to test tfferént illegal cases.) You do not
need to check for lexical or syntactic errors, gehantic errors. The
Sanpl ePr ogr ans directory contains some files that should typekhagter you
make your changes; some of the files should typsckeccessfully with the
initial version of the MiniJava compiler.

You can use thet ypecheck - pri nt Synbol Tabl es options to the MiniJava
compiler to just run the typechecking phase anait jmiit the top-level symbol tables that
it builds. See theest _t ypechecker targetin thévakefi | e for an example, and
feel free to make your own target(s) to make rugrtire tests you like easier and more
mechanical.

Turn in the following:

1. Your new and/or modifiedST/ *. j ava andTypechecker/ *. j ava files.
Clearly identify any modifications to existing f@ising comments.

2. Your test cases, with names of the farame. | egal . j ava for test cases that
should typecheck successfully amane. i | | egal . j ava for test cases that
should trigger typechecking errors.

3. A transcript of running your typechecker and pngtbut the resulting symbol
tables on each of your test cases.

Create a single directory, compress it and tuim ity the due date.

