Project 2: The MiniJava Par ser

Due: Monday, February 4, 11:59pm, by turn-in.

In this assignment you will extend the initial Miava parser and AST representation
with the extensions described in the course prajestription handout.

You should extend MiniJava's syntax to allow thiéofeing (all of which are legal in full
Java too):

- doubl e is a legal (base) type.

- A floating-point literal constant is a legal exsies.

« An array of a base type, e.gnt[],bool ean[][][], and in general
t ype[] wheret ype is an arbitrary base type, is a legal (base) tyBase types
are ints, booleans, doubles, and arrays of basstypnly class types are not base
types; this restriction is included only becaudeeovise the language becomes
too hard to parse! The AST and the rest of the ¢lemghould not depend on this
restriction against arrays of class types, howgver.

« A one-level array allocation expression, engw i nt[10] , new
bool ean[20][][], and in generalew t ype[expr] di ns wheret ype is
an arbitrary non-array base tygepr is an arbitrary expression, addns is a
possibly-empty sequence [of 's, is a legal expression.

« Anarray dereference, e.@f,i],b[i][]j][k], andin general
expr 1[expr 2] whereexpr 1 is an arbitrary atomic expression axpr 2 is
an arbitrary expression, is a legal expressionakay dereference is also legal on
the left-hand side of an assignment statement.nfd@xpressions EXclude
unary and binary operator expressions and arragatibn expressions.)

« An array length expression, e.g.,| engt h and in generaxpr. | engt h
whereexpr is an arbitrary atomic expression, is a legal eggion] engt h is a
reserved word in MiniJava (unlike Java).

« An or expression (using thg infix operator) is a legal expression.

- i f statements do not requieé se clauses.

« For loops of the restricted forhor (i = exprl; expr2; i = expr3)
st nt are allowed, wherexpr 1, expr 2, andexpr 3 are arbitrary expressions,
i is an arbitrary variable (but which has to begame variable in both the
initialization and increment clauses, atdt is an arbitrary statement.

« break statements are allowed. (You do not need to chrethe syntax that
break statements only appear inside of loops; seoamecking will enforce
this.)

« A class variable declaration may be preceded bgtla i ¢ reserved word to
declare a static class variable.

You should follow the precedence and associativilgs of regular Java for these
extensions. It's OK to use CUPsedecence declarations to achieve this.

It's OK to have one shift/reduce conflict in youE grammar, for the "dangling else"
problem. Add the-"expect 1" option before then ni j ava. cup argument in the
Makef i | e to buildPar ser/ par ser. j ava if you decide to accept this shift/reduce
conflict. (FYI, in making my sample solution, Iddn't find a way to revise the CUP
grammar specification to avoid this conflict.)

You should add new AST classes and/or modify exgsfiST classes so that you can
represent the new MiniJava constructs. You shdefthe the appropriateoSt ri ng
operations on these classes so that they can tig-primted in a form that is

syntactically legal and produces the same ASTi# farsed again. The other operations
required of AST nodes, e.g. typechecking, evalga@md lowering, you should
implement by throwindJni npl enent edEr r or exceptions.

You only need to get the parser to work (and kéepektended scanner working). You
do not need to do anything to enforce type checkihgs or other semantic-analysis
constraints on the input program.

Do the following:

1. Extend the specification of MiniJavagntactic structure to describe the
extended language, in the same style. (You camesgrecedence and
associativity is specified separately, and it is OKlefine a grammar that is
ambiguous with respect to the "dangling else" proh)

2. Add and/or modify classes in the AST subdirectoryepresent the extended
language.

3. ExtendPar ser/ m nij ava. cup to parse the extended language and construct
the abstract syntax tree representing the parsagam.

4. Develop test cases that demonstrate that your @ateparser and AST classes
work, both in cases that should now be syntactidafial and in cases that should
still be syntactically illegal. (Since the parseitg at the first error, you'll likely
need several illegal test case files to test tfferént illegal cases.) You do not
need to check for lexical errors, just syntactroes. TheSanpl ePr ogr ans
directory contains some files that should parsergtbu make your changes; some
of the files should parse successfully with théahiversion of the MiniJava
compiler.

You can use thepar se - pri nt AST options to the MiniJava compiler to just run the
parsing phase and print out the AST that it buil8ee the est _par ser target in the
Makef i | e for an example, and feel free to make your owgdg{s) to make running the
tests you like easier and more mechanical.

Turn in the following:

=

Your extended MiniJavayntax specification.

2. Your modifiedm ni j ava. cup file. Clearly identify your changes using
comments.

3. Your new and/or modifiedST/ *. | ava files. Clearly identify any
modifications using comments.

4. Your test cases, with names of the farame. | egal . j ava for test cases that
should parse successfully amdne. i | | egal . j ava for test cases that should
trigger syntax errors.

5. A transcript of running your parser and printing the resulting AST on each of

your test cases (at least).

Create a single directory containing these files, submit them electronically by the due
date.

