
10/20/2008

1

David Notkin

Autumn Quarter 2008

Project information

Finally posted

• Parser: due October 27

– Must be submitted on time and substantially

complete – not graded, but commented upon

– Late or not substantially complete submissions will

be recorded

• Semantic analyzer: due November 10

– Both parser and semantic analyzer will be graded

at this point

• All project information in this slide deck is on the

project web pages

CSE401 Au08 2

Other dates

• Today: office hours only until 2PM

• This Wednesday (10/23): mid-term review

• This Friday (10/25): mid-term

• Tuesday November 4: Election Day

• Friday November 7: no lecture, project focus

• Monday November 10 & Wednesday November 12:

guest lecturers

CSE401 Au08 3

Project B: Extend MiniJava's syntax

• double is a legal (base) type

• A floating-point literal constant is a legal expression

• An or expression (using the || infix operator) is a legal
expression

• if statements do not require else clauses

• For loops of the restricted form for (i = expr1; expr2; i
= expr3)stmt are allowed, where expr1, expr2, and
expr3 are arbitrary expressions,i is an arbitrary
variable (but which has to be the same variable in
both the initialization and increment clauses), and
stmt is an arbitrary statement.

• break statements are allowed.

CSE401 Au08 4

Arrays

• An array of a base type, e.g., int[], boolean[][][], and in
general type[] where type is an arbitrary base type, is a
legal (base) type.

– Base types are ints, booleans, doubles, and arrays of
base types.

– Only class types are not base types; this restriction is
included only because otherwise the language
becomes too hard to parse!

• A one-level array allocation is a legal expression, e.g.,
new int[10], new boolean[20][][], and in general new
type[expr]dims

– where type is an arbitrary non-array base type

– expr is an arbitrary expression

– dims is a possibly-empty sequence of []'s.

CSE401 Au08 5

Arrays con’t

• An array dereference, e.g., a[i], b[i][j][k], and in

generalexpr1[expr2] where expr1 is an arbitrary atomic

expression and expr2 is an arbitrary expression, is a legal

expression.

• An array dereference is also legal on the left-hand side of

an assignment statement. (Atomic expressions EXclude

unary and binary operator expressions and array

allocation expressions.)

• An array length expression, e.g., a.length and in general

expr.length where expr is an arbitrary atomic expression

– length is a reserved word in MiniJava (unlike Java).

CSE401 Au08 6

10/20/2008

2

Static class variable

• A class variable declaration may be preceded by the

static reserved word to declare a static class variable

CSE401 Au08 7

Precedence/associativity

• You should follow the precedence and associativity rules of regular Java for
these extensions.

– It's OK to use CUP's predecence declarations to achieve this.

– It's OK to have one shift/reduce conflict in your CUP grammar, for the
"dangling else" problem.

• Add the "-expect 1" option before the minijava.cup argument in the
Makefile to build Parser/parser.java if you decide to accept this
shift/reduce conflict.

• You should add new AST classes and/or modify existing AST classes so
that you can represent the new MiniJava constructs.

– You should define the appropriate toString operations on these classes
so that they can be pretty-printed in a form that is syntactically legal
and produces the same AST if it is parsed again.

– The other operations required of AST nodes, e.g. typechecking,
evaluating, and lowering, you should implement by throwing
UnimplementedError exceptions.

CSE401 Au08 8

Project C: MiniJava typechecking

• Extend ResolvedType hierarchy to support the

double type

• Extend ResolvedType hierarchy to support the array

type constructor, which stores its element type

– The array type constructor follows structural type

equivalence rules

– MiniJava restricts Java by defining one array type

to be a subtype of another array type only when

the two array types are equivalent.

• Extend the VarInterface hierarchy to support static

class variable declarations

CSE401 Au08 9

Implement typechecking for new and/or

modified AST node classes

• Allow static class variables to be declared, so that they may be legally
referenced in variable reads and assignments.

• Allow if statements to omit their else clause.

• Check that a for statement's loop index variable was previously
declared to be an int, that its initialization and update expressions return
ints, and that its test expression returns a boolean.

• Check that a break statement only appears in the body of a while or for
loop. (You may change the interface of the Stmt.typecheck operation to
do this.)

• Check that an or (||) expression has boolean operands.

• Allow ints to be assignable to doubles, including in regular assignments,
in array assignments, in parameter passing into a method, and in
returning from a method.

• Allow the +, -, *, /, <, <=, >=, >, ==, and != operations to also be applied
to doubles, and, for binary operations, to mixes of ints and doubles.

• Allow the System.out.println operation to also be applied to a double.

CSE401 Au08 10

Arrays

• Check that an array new expression has a size
subexpression of type int.

• Check that an array length expression has an array
subexpression that's an array.

• Check that an array lookup expression has an array
subexpression that's an array and an index
subexpression that's an int.

• Check that an array assignment statement has an
array subexpression that's an array, an index
subexpression that's an int, and a right-hand-side
expression whose type is assignable to the array's
element type.

CSE401 Au08 11

Design

• What goes in the scanner vs. what goes in the

parser?

• How to decide?

CSE401 Au08 12

10/20/2008

3

Possible answers include…

• Cohesion – why are elements placed together into

components?
– “component” is intentionally pretty vague here, and could include

packages, classes, modules, etc.

• Coupling – what are the interconnections and

dependences between components (and why)?

• Anticipating change – what are likely changes and

how will they be accommodated?

• Simplicity – see Hoare’s quotation, next slide

• Conceptual integrity – is there a consistent approach

to existing decisions?

• … others?

CSE401 Au08 13

Hoare sez

• “There are two ways of constructing a software

design: One way is to make it so simple that there

are obviously no deficiencies, and the other way is to

make it so complicated that there are no obvious

deficiencies. The first method is far more difficult.”

CSE401 Au08 14

Software structure degrades

• There is plenty of evidence that software structure

degrades over time

• That is, well-planned and well-designed software

systems become increasingly tangled over time

– Less simple, less clear cohesion, more muddled

coupling, harder to change, etc.

• One reason for this is that programmers often change

code in a way that is locally sensible but has poor

global and long-term consequences

• Reducing the rate of increase in entropy generally

demands more global knowledge of the software

CSE401 Au08 15

MiniJava

• As much as possible, respect the existing design –

that is, try to maintain its conceptual integrity

• At least two reasons

– Chambers, who wrote it originally, is a top-notch

designer and programmer

– You will end up with fewer unexpected interactions

and problems

CSE401 Au08 16

Software testing

• What are possible goals of software testing?

CSE401 Au08 17

Dijkstra

• “Testing can only be used to show the presence of

bugs, not their absence.”

CSE401 Au08 18

10/20/2008

4

What are alternatives to these goals?

• Formal verification of the software

– Verification vs. validation: Building the system

right vs. building the right system [Boehm]

• Inspections, reviews, walkthroughs

• Certifying the process (e.g., ISO9000)

• Certifying the practitioners (e.g., licensing doctors)

• …

CSE401 Au08 19

A broad-brush of some testing issues

• White-box vs. black-box testing

– Can see the code, can’t see the code

• Functional vs. performance vs. stress vs. acceptance

vs. beta vs. … testing

• Structural coverage testing

CSE401 Au08 20

Some terminology

• A failure occurs when a program doesn’t satisfy its

specification

• A fault occurs when a program’s internal state is

inconsistent with what is expected (this is usually an

informal notion)

• A defect is the code that leads to a fault (and perhaps

a failure)

• An error is the mistake the programmer made in

creating the defect

21CSE401 Au08 22

A simple problem

• The program reads three integer values. The three

values are interpreted as representing the lengths of

the sides of a triangle. The program prints a

message that states whether the triangle is isosceles,

equilateral or scalene.

• Write a set of test cases that would adequately test

this program

CSE401 Au08

23

A study showed…

• 13 kinds of defects were found in actual programs

• Experienced programmers on average write test

cases that identify about half of the defects

CSE401 Au08 24

The lucky thirteen

• Valid scalene

• Valid equilateral

• Valid isosceles

• All permutations that
represent valid scalene

• One side is zero

• One side is negative

• All sides are zero

• Three positive integers
where two sum to the
third

• All permutations of the
previous case

• Three positive integers
where two sum to less
than the third

• All permutations of this

• A non-integer side

• An incorrect number of
inputs

CSE401 Au08

10/20/2008

5

25

Bach adds…

• A GUI that accepts the three inputs

• Asks his students to “try long inputs”

• Interesting lengths
– 16 digits+: loss of mathematical precision

– 23+: can’t see all of the input

– 310+: input not understood as a number

– 1000+: exponentially increasing freeze when navigating to
the end of the field by pressing <END>

– 23,829+: all text in field turns white

– 2,400,000: reproducible crash

• The programmer was only aware of the first two
boundaries

CSE401 Au08

“What stops testers from trying longer inputs?”

• Bach suggests

– Seduced by what’s visible

– Think they need the specification to tell them the

maximum – and if they have one, stop there

– Satisfied by first boundary

– Use linear lengthening strategy

– Think “no one would do that”

– …

26CSE401 Au08

27

Partition testing

• Basic idea: divide program input space into

(quasi-)equivalence classes, selecting at least one

test case from each class

CSE401 Au08

Structural coverage testing

• Premise: if significant parts of the program structure

are not tested, testing is surely inadequate

• Control flow coverage criteria

– Statement (node, basic block) coverage

– Branch (edge) and condition coverage

– Data flow (syntactic dependency) coverage

– Others…

• Attempted compromise between the impossible and

the inadequate

28CSE401 Au08

29

Statement coverage

• What’s a statement?
– max = (x > y) ? x : y;

– Using basic blocks

can help this issue

• Obviously

unsatisfying in trivial

cases (such as the

second example on

the right, from

Ghezzi)

if x > y then

max := x

else

max :=y

endif

if x < 0 then

x := -x

endif

z := x;

CSE401 Au08

Edge coverage

• Uses control flow graph

– We’ll see these soon!

– Essentially a flowchart

• Covering all basic

blocks (nodes) would

not require edge ac to

be covered

• Edge coverage requires

all control flow graph

edges to be coverage

by at least one test

30

a

b

c

d

e

f

CSE401 Au08

10/20/2008

6

31

Condition coverage

• How to handle compound conditions?
– if (p != NULL) && (p->left < p->right) …

• Is this a single conditional in the CFG?

• How do you handle short-circuit conditionals?

– andthen, orelse …

• Condition coverage treats these as separate

conditions and requires tests that handle all

combinations

CSE401 Au08 32

Path coverage

• Edge coverage is in some sense very static

• Edges can be covered without covering actual paths

(sequences of edges) that the program may execute

• Note that not all paths in a program are always

executable

– Writing tests for these is hard

– Not shipping a program until these paths are executed does

not provide a competitive advantage

• Loops (or recursion) makes life even harder

CSE401 Au08

Summary

• Software testing – and only parts were covered at the

lightest imaginable level – is a complex art

• But you need to be able to wear two hats – that of the

developer, and that of the tester – and this is

extremely hard

• These ideas may give you some more disciplined

way to think about your testing process, informal

though it will be

CSE401 Au08 33

