
10/29/2008

1

The Backend (continued)

David Notkin

Autumn 2008

Run-time storage layout

• Representation of

– int, bool, etc.

– arrays, records, etc.

– procedures

• Placement of

– global variables

– local variables

– parameters

– results

CSE401 Au08 2

Storage allocation strategies

• Given layout of data structure, where in memory to

allocate space for each instance?

• Key issue: what is the lifetime (dynamic extent) of a

variable/data structure?

– Whole execution of program (e.g., global

variables)

• Static allocation

– Execution of a procedure activation (e.g., locals)

• Stack allocation

– Variable (dynamically allocated data)

• Heap allocation

CSE401 Au08 3

Run-time memory

• Code/Read-only data area

– Shared across processes

running same program

• Static data area

– Can start out initialized or

zeroed

• Heap

– Can expand upwards through

(e.g. sbrk) system call

• Stack

– Expands/contracts

downwards automatically

stack

heap

static data

code/RO data

Static allocation

• Statically allocate variables/data structures with

global lifetime

– Machine code

– Compile-time constant scalars, strings, arrays, etc.

– Global variables

– static locals in C, all variables in FORTRAN

• Compiler uses symbolic addresses

• Linker assigns exact address, patches compiled code

Stack allocation

• Stack-allocate variables/data structures with LIFO

lifetime

– Data doesn’t outlive previously allocated data on

the same stack

• Stack-allocate procedure activation records

– Frame includes formals, locals, temps

– And housekeeping: static link, dynamic link, …

• Fast to allocate and de-allocate storage

• Good memory locality

10/29/2008

2

Stack allocation II

• What about

variables local to

nested scopes

within one

procedure?

procedure P() {

int x;

for(int i=0; i<10; i++){

double x;

…

}

for(int j=0; j<10; j++){

double y;

…

}

}

Stack allocation: constraints I

• No references to stack-

allocated data allowed

after returns

• This is violated by

general first-class

functions

proc foo(x:int):

proctype(int):int;

proc bar(y:int):int;

begin

return x + y;

end bar;

begin

return bar;

end foo;

var f:proctype(int):int;

var g:proctype(int):int;

f := foo(3);

g := foo(4);

output := f(5);

output := g(6);

Stack allocation: constraints II

• Also violated if

pointers to locals

are allowed

proc foo (x:int): *int;

var y:int;

begin

y := x * 2;

return &y;

end foo;

var w,z:*int;

z := foo(3);

w := foo(4);

output := *z;

output := *w;

Heap allocation

• For data with unknown lifetime

– new/malloc to allocate space

– delete/free or garbage collection to de-allocate

• Heap-allocate activation records of first-class

functions

• Relatively expensive to manage

• Can have dangling reference, storage leaks

– Garbage collection reduces (but may not

eliminate) these classes of errors

Stack frame layout

• Formals, locals, housekeeping

– Dynamic and static link

– Saved registers, …

• Dedicate registers to support stack access

– FP - frame pointer: ptr to start of stack frame

(fixed)

– SP - stack pointer: ptr to end of stack (can move)

Key property

• All data in stack frame is at a fixed, statically

computed offset from the FP

• This makes it easy to generate fast code to access

the data in the stack frame

– And lexically enclosing stack frames

• Can compute these offsets solely from the symbol

tables

– Based also on the chosen layout approach

10/29/2008

3

...caller's frame...

formal N

formal N-1

...

formal 1

static link

return address

dynamic link

saved registers

local N

local N-1

...

local 1FP

stack

grows

down

high

addresses

low

addresses

o
n

e
 s

ta
c
k
 f
ra

m
e

Stack Layout Accessing locals

• If a local is in the same stack frame then

– t := *(fp + local_offset)

• If in lexically-enclosing stack frame

– t := *(fp + static_link_offset)

t := *(t + local_offset)

• If in a further enclosing block

– t := *(fp + static_link_offset)

t := *(t + static_link_offset)

…

t := *(t + local_offset)

At compile-time need to calculate

• Difference in nesting depth of use and definition

• Offset of local in defining stack frame

• Offsets of static links in intervening frames

Calling conventions

• Define responsibilities of caller and callee

– To make sure the stack frame is properly set up

and torn down

• Some things can only be done by the caller

• Other things can only be done by the callee

• Some can be done by either

• So, we need a protocol

Typical calling sequence

Caller

• Evaluate actual args

– Order?

• Push onto stack

– Order?

– Alternative: First k args in

registers

• Push callee's static link

– Or in register? Before or after

stack arguments?

• Execute call instruction

– Hardware puts return address

in a register

Callee

• Save bookkeeping information

on stack

• Allocates space for locals,

other data

– sp := sp -

size_of_locals -

other_data

– Locals stored in what order?

• Set up new frame pointer
(fp := sp)

• Start executing callee’s code

Typical return sequence

Callee

• Deallocate space for

local, other data
– sp := sp +

size_of_locals +

other_data

• Restore caller’s frame

pointer, return address &

other regs, all without

losing addresses of stuff

still needed in stack

• Execute return instruction

Caller

• Deallocate space for

callee’s static link, args
– sp := fp

• Continue execution in

caller after call

