
1

Parsing: continued

David Notkin

Autumn 2008

Parsing Algorithms

• Earley’s algorithm (1970)

works for all CFGs

– O(N3) worst case

performance – O(N2) for

unambiguous grammars

– Based on dynamic

programming, used

primarily for computational

linguistics

• Different parsing algorithms
generally place various

restrictions on the grammar

of the language to be parsed

• Top-down

• Bottom-up

• Recursive descent

• LL

• LR

• LALR

• SLR

• CYK

• GLR

• Simple precedence parser

• Bounded context

• …

• ACM digital library returned 5600+
articles matching “parsing algorithm”

• Google Scholar almost 34,000

CSE401 Au08 2

Top Down Parsing

• Build parse tree from the top (start symbol) down to

leaves (terminals)

• Basic issue: when expanding a nonterminal, which right

hand side should be selected?

• Solution: look at input tokens to decide

Stmts ::= Call | Assign | If | While

Call ::= Id (Expr {,Expr})

Assign ::= Id := Expr ;

If ::= if Test then Stmts end

| if Test then Stmts else Stmts end

While ::= while Test do Stmts end

CSE401 Au08 3

Predictive Parser

• Predictive parser: top-down parser that uses at most the next k

tokens to select production (the lookahead)

• Efficient: no backtracking needed, linear time to parse

• Implementations (analogous to lexing)

– recursive-descent parser

• each nonterminal parsed by a procedure

• call other procedures to parse sub-nonterminals,
recursively

• typically written by hand

– table-driven parser

• push-down automata: essentially a table-driven FSA,
plus stack to do recursive calls

• typically generated by a tool from a grammar

specification
CSE401 Au08 4

2

LL(k)

Left-to-right scan

LL(k)

k tokens lookahead

LL (k)

Find Left derivation
LL(k) Grammars

• Can construct predictive parser automatically and easily if

grammar is LL(k)

– Left-to-right scan of input, finds leftmost derivation

– k tokens of look ahead needed

• Some restrictions including

– no ambiguity

– no common prefixes of length ≥ k:
If ::= if Test then Stmts end |

if Test then Stmts else Stmts end

– no left recursion (e.g., E ::= E Op E | ...)

• Restrictions guarantee that, given k input tokens, can always

select correct right hand side to expand nonterminal.

CSE401 Au08 5

What if there are common prefixes?

• Left factor common prefixes to eliminate them

– create new nonterminal for different suffixes

– delay choice until after common prefix

• Before
If ::= if Test then Stmts end |

if Test then Stmts else Stmts end

• After
If ::= if Test then Stmts IfCont

IfCont ::= end | else Stmts end

CSE401 Au08 6

Left recursion? Rewrite…

Before

E ::= E + T | T

T ::= T * F | F

F ::= id | ...

After

E ::= T ECon

ECon ::= + T ECon |

T ::= F TCon

TCon ::= * F TCon |

F ::= id | ...

• May not be as clear; can sugar it
E ::= T { + T }

T ::= F { * F }

F ::= id | (E) | …

• Greater distance from concrete
syntax to abstract syntax

CSE401 Au08 7

Table-driven predictive parser

• Automatically compute PREDICT table from grammar

• PREDICT(nonterminal,input-token) => right hand

side

CSE401 Au08 8

3

Compute PREDICT table

• Compute FIRST set for each right hand side

– All tokens that can appear first in a derivation from

that right hand side

• In case right hand side can be empty

– Compute FOLLOW set for each non-terminal

• All tokens that can appear immediately after

that non-terminal in a derivation

• Compute FIRST and FOLLOW sets mutually

recursively

• PREDICT then depends on the FIRST set

CSE401 Au08 9

Example for you to do: if you want

CSE401 Au08 10

PREDICT and LL(1)

• If PREDICT table has at most one entry per cell

– Then the grammar is LL(1)

– There is always exactly one right choice

• So it’s fast to parse and easy to implement

• If multiple entries in each cell

– Ex: common prefixes, left recursion, ambiguity

– Can rewrite grammar (sometimes)

– Can patch table manually, if you “know” what to do

– Or can use more powerful parsing technique

CSE401 Au08 11

Top down implementation

• For years the 401

compiler was a top-

down predictive parser,

implemented by a

method for each

nonterminal
– We have shifted to a

bottom-up, automatically
generated parser

– But if you’re going to build
a simple one, this is

usually best

• Examples from

http://en.wikibooks.org/

wiki/Compiler_construct

ion

– Helper functions on right

int accept(Symbol s) {

if (sym == s) {

getsym();

return 1;

}

return 0;

}

int expect(Symbol s) {

if (accept(s))

return 1;

error("expect: unexpected

symbol");

return 0;

}
CSE401 Au08 12

http://en.wikibooks.org/wiki/Compiler_construction
http://en.wikibooks.org/wiki/Compiler_construction
http://en.wikibooks.org/wiki/Compiler_construction

4

Example method

void factor(void) {

if (accept(ident)) {

;

} else if (accept(number)) {

;

} else if (accept(lparen)) {

expression();

expect(rparen);

} else {

error("factor: syntax error");

getsym();

}

}

CSE401 Au08 13

Example method

void statement(void) {

if (accept(ident)) {

expect(becomes);

expression();

…

} else if (accept(ifsym)) {

condition();

expect(thensym);

statement();

} else if (accept(whilesym)) {

condition();

expect(dosym);

statement();

}

}

CSE401 Au08 14

Bottom up parsing

• Construct parse tree for input from leaves up

– reducing a string of tokens to single start symbol by inverting
productions

• Bottom-up parsing is more general than top-down parsing and

just as efficient – generally preferred in practice

CSE401 Au08 15

int * int + int T ::= int

int * T + int T ::= int * T

T + int T ::= int

T + T E ::= T

T + E E ::= T + E

E

Read the

productions found
by bottom-up parse

bottom to top; this

is a rightmost
derivation!

“Shift-reduce” strategy

• read (“shift”) tokens until the right hand side of

“correct” production has been seen

• reduce handle to nonterminal, then continue

• done when all input read and reduced to start

nonterminal

CSE401 Au08 16

xyzabcdef

^

A ::= bc.D

5

LR(k)

• LR(k) parsing

– Left-to-right scan of input, rightmost derivation

– k tokens of look ahead

• Strictly more general than LL(k)

– Gets to look at whole right hand side of production

before deciding what to do, not just first k tokens

– Can handle left recursion and common prefixes

– As efficient as any top-down parsing

• Complex to implement

– Generally need automatic tools to construct parser

from grammar

CSE401 Au08 17

LR Parsing Tables

• Construct parsing tables implementing a FSA with a stack

– rows: states of parser

– columns: token(s) of lookahead

– entries: action of parser

• shift, goto state X

• reduce production “X ::= RHS”

• accept

• error

• Algorithm to construct FSA similar to algorithm to build DFA

from NFA

– each state represents set of possible places in parsing

• LR(k) algorithm may build huge tables

CSE401 A8 18

Questions?

CSE401 Au08 19

Ada language/compiler color

• US DoD wanted (roughly) a single, high-level

programming language

• They wrote requirements for this language and

received 14 bids (1977)

• Four semi-finalists (1978): green (Cii), red for

(Intermetrics), blue (SofTech), yellow for (SRI)

• Two finalists: green and red – requirements finalized

as Steelman document

CSE401 Au08 20

6

General syntax: examples from Steelman

• 2A. Character Set. The full set of
character graphics that may be

used in source problems shall be
given in the language definition.

Every source program shall also

have a representation that uses only
the following 55 character subset of

the ASClI graphics: …

• 2B. Grammar. The language should

have a simple, uniform, and easily
parsed grammar and lexical

structure. The language shall have
free form syntax and should use

familiar notations where such use
does not conflict with other goals.

• 2D. Other Syntactic Issues. Multiple
occurrences of a language defined

symbol appearing in the same
context shall not have essentially

different meanings. …

• 2E. Mnemonic identifiers.

Mnemonically significant identifiers

shall be allowed. There shall be a
break character for use within

identifiers. The language and its
translators shall not permit

identifiers or reserved words to be
abbreviated. …

• 2G. Numeric Literals. There shall be
built-in decimal literals. There shall

be no implicit truncation or rounding
of integer and fixed point literals

CSE401 Au08 21

York Ada compiler (c. 1986)
“Facts and Figures About the York Ada Compiler” (Wand et al.)

• Written in C

• About 80 KLOC for compiler

– Front-end about 57 KLOC, code gen about 20

KLOC, VAX-specific code gen about 3 KLOC

• 7 KLOC for run-time
• “It is difficult to make an accurate estimate of the time taken to write the

compiler because the compiler writers had other demands on their time

(completing PhDs, teaching, etc.) . Fourteen individuals have been

involved at various times during the project and have contributed

approximately 20 man years to the design and construction of the

software . The money spent directly to support the construction of the

compiler was [approximately $340k], however this included neither the

salaries of four members of the project nor the cost of computer time

(we used approximately 30% of a VAX-11/780 over a five year period).”

CSE401 Au08 22

