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Parsing Algorithms

• Earley’s algorithm (1970) 

works for all CFGs

– O(N3) worst case 

performance – O(N2) for 

unambiguous grammars

– Based on dynamic 

programming, used 

primarily for computational 

linguistics

• Different parsing algorithms 
generally place various 

restrictions on the grammar 

of the language to be parsed

• Top-down

• Bottom-up

• Recursive descent

• LL

• LR

• LALR

• SLR

• CYK

• GLR

• Simple precedence parser

• Bounded context

• …

• ACM digital library returned 5600+ 
articles matching “parsing algorithm”

• Google Scholar almost 34,000
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Top Down Parsing

• Build parse tree from the top (start symbol) down to 

leaves (terminals) 

• Basic issue: when expanding a nonterminal, which right 

hand side should be selected?

• Solution: look at input tokens to decide

Stmts ::= Call | Assign | If | While

Call   ::= Id ( Expr {,Expr} )

Assign ::= Id := Expr ;

If     ::= if Test then Stmts end

| if Test then Stmts else Stmts end

While  ::= while Test do Stmts end 
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Predictive Parser

• Predictive parser: top-down parser that uses at most the next k 

tokens to select production (the lookahead) 

• Efficient: no backtracking needed, linear time to parse 

• Implementations (analogous to lexing)

– recursive-descent parser 

• each nonterminal parsed by a procedure 

• call other procedures to parse sub-nonterminals, 
recursively 

• typically written by hand 

– table-driven parser 

• push-down automata: essentially a table-driven FSA, 
plus stack to do recursive calls 

• typically generated by a tool from a grammar 

specification
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LL(k)

Left-to-right scan

LL(k)

k tokens lookahead

LL (k)

Find Left derivation
LL(k) Grammars

• Can construct predictive parser automatically and easily if 

grammar is LL(k) 

– Left-to-right scan of input, finds leftmost derivation 

– k tokens of look ahead needed

• Some restrictions including

– no ambiguity

– no common prefixes of length ≥ k: 
If ::= if Test then Stmts end | 

if Test then Stmts else Stmts end 

– no left recursion (e.g., E  ::= E Op E | ...)

• Restrictions guarantee that, given k input tokens, can always 

select correct right hand side to expand nonterminal. 
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What if there are common prefixes?

• Left factor common prefixes to eliminate them 

– create new nonterminal for different suffixes 

– delay choice until after common prefix 

• Before
If ::= if Test then Stmts end | 

if Test then Stmts else Stmts end 

• After
If     ::= if Test then Stmts IfCont

IfCont ::= end | else Stmts end
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Left recursion? Rewrite…

Before

E ::= E + T | T 

T ::= T * F | F 

F ::= id | ...

After

E    ::= T ECon

ECon ::= + T ECon | 

T    ::= F TCon

TCon ::= * F TCon | 

F    ::= id | ...

• May not be as clear; can sugar it
E ::= T { + T }

T ::= F { * F }

F ::= id | ( E ) | …

• Greater distance from concrete 
syntax to abstract syntax
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Table-driven predictive parser

• Automatically compute PREDICT table from grammar

• PREDICT(nonterminal,input-token) => right hand 

side
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Compute PREDICT table

• Compute FIRST set for each right hand side

– All tokens that can appear first in a derivation from 

that right hand side

• In case right hand side can be empty

– Compute FOLLOW set for each non-terminal

• All tokens that can appear immediately after 

that non-terminal in a derivation

• Compute FIRST and FOLLOW sets mutually 

recursively

• PREDICT then depends on the FIRST set 
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Example for you to do: if you want
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PREDICT and LL(1)

• If PREDICT table has at most one entry per cell

– Then the grammar is LL(1)

– There is always exactly one right choice

• So it’s fast to parse and easy to implement

• If multiple entries in each cell

– Ex: common prefixes, left recursion, ambiguity

– Can rewrite grammar (sometimes)

– Can patch table manually, if you “know” what to do

– Or can use more powerful parsing technique
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Top down implementation

• For years the 401 

compiler was a top-

down predictive parser, 

implemented by a 

method for each 

nonterminal
– We have shifted to a 

bottom-up, automatically 
generated parser

– But if you’re going to build 
a simple one, this is 

usually best

• Examples from 

http://en.wikibooks.org/

wiki/Compiler_construct

ion

– Helper functions on right

int accept(Symbol s) {

if (sym == s) {

getsym();

return 1;

}

return 0;

}

int expect(Symbol s) {

if (accept(s))

return 1;

error("expect: unexpected 

symbol");

return 0;

}
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Example method

void factor(void) {

if (accept(ident)) {

;

} else if (accept(number)) {

;

} else if (accept(lparen)) {

expression();

expect(rparen);

} else {

error("factor: syntax error");

getsym();

}

}
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Example method

void statement(void) {

if (accept(ident)) {

expect(becomes);

expression();

…

} else if (accept(ifsym)) {

condition();

expect(thensym);

statement();

} else if (accept(whilesym)) {

condition();

expect(dosym);

statement();

}

}
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Bottom up parsing

• Construct parse tree for input from leaves up 

– reducing a string of tokens to single start symbol by inverting 
productions

• Bottom-up parsing is more general than top-down parsing and 

just as efficient – generally preferred in practice

CSE401 Au08 15

int * int + int T ::= int

int * T  + int T ::= int * T

T + int T ::= int

T + T E ::= T

T + E E ::= T + E

E

Read the 

productions found 
by bottom-up parse 

bottom to top; this 

is a rightmost 
derivation!

“Shift-reduce” strategy

• read (“shift”) tokens until the right hand side of 

“correct” production has been seen

• reduce handle to nonterminal, then continue 

• done when all input read and reduced to start 

nonterminal
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^
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LR(k)

• LR(k) parsing

– Left-to-right scan of input, rightmost derivation 

– k tokens of look ahead 

• Strictly more general than LL(k) 

– Gets to look at whole right hand side of production 

before deciding what to do, not just first k tokens

– Can handle left recursion and common prefixes

– As efficient as any top-down parsing

• Complex to implement 

– Generally need automatic tools to construct parser 

from grammar 
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LR Parsing Tables

• Construct parsing tables implementing a FSA with a stack

– rows: states of parser

– columns: token(s) of lookahead

– entries: action of parser

• shift, goto state X

• reduce production “X ::= RHS”

• accept

• error 

• Algorithm to construct FSA similar to algorithm to build DFA 

from NFA

– each state represents set of possible places in parsing 

• LR(k) algorithm may build huge tables
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Questions?
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Ada language/compiler color

• US DoD wanted (roughly) a single, high-level 

programming language

• They wrote requirements for this language and 

received 14 bids (1977)

• Four semi-finalists (1978): green (Cii), red for 

(Intermetrics), blue (SofTech), yellow for (SRI)

• Two finalists: green and red – requirements finalized 

as Steelman document
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General syntax: examples from Steelman

• 2A. Character Set. The full set of 
character graphics that may be 

used in source problems shall be 
given in the language definition. 

Every source program shall also 

have a representation that uses only 
the following 55 character subset of 

the ASClI graphics: …

• 2B. Grammar. The language should 

have a simple, uniform, and easily 
parsed grammar and lexical 

structure. The language shall have 
free form syntax and should use 

familiar notations where such use 
does not conflict with other goals. 

• 2D. Other Syntactic Issues. Multiple 
occurrences of a language defined 

symbol appearing in the same 
context shall not have essentially 

different meanings. …

• 2E. Mnemonic identifiers. 

Mnemonically significant identifiers 

shall be allowed. There shall be a 
break character for use within 

identifiers. The language and its 
translators shall not permit 

identifiers or reserved words to be 
abbreviated. …

• 2G. Numeric Literals. There shall be 
built-in decimal literals. There shall 

be no implicit truncation or rounding 
of integer and fixed point literals
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York Ada compiler (c. 1986)
“Facts and Figures About the York Ada Compiler” (Wand et al.)

• Written in C

• About 80 KLOC for compiler

– Front-end about 57 KLOC, code gen about 20 

KLOC, VAX-specific code gen about 3 KLOC

• 7 KLOC for run-time
• “It is difficult to make an accurate estimate of the time taken to write the 

compiler because the compiler writers had other demands on their time 

(completing PhDs, teaching, etc.) . Fourteen individuals have been 

involved at various times during the project and have contributed 

approximately 20 man years to the design and construction of the 

software . The money spent directly to support the construction of the 

compiler was [approximately $340k], however this included neither the 

salaries of four members of the project nor the cost of computer time 

(we used approximately 30% of a VAX-11/780 over a five year period).”
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