
9/26/2008

1

Introduction to Compiler Construction

David Notkin

Autumn 2008

Source

Program
[Higher-Level

Programming

Language]

Compiler

Target

Program
[Lower-Level

Language/

Architecture]

C
S

E
4

0
1

“Compiler”: from the web

• The Oxford English Dictionary (OED) indicates that the first

usage of the term is circa 1330, referring to one who collects

and puts together materials

– They also note a usage “Diuerse translatours and

compilaris” from Scotland in 1549

• Most dictionaries give the above definition as well as the

computing-based definition (which the OED dates to 1953)

– A program that translates programs written in a high-level

programming language into equivalent programs in a lower-

level language

• Wikipedia credits Grace Hopper with the first compiler (for a

language called A-0) in 1952, and John Backus’ IBM team with

the first complete compiler (for FORTRAN) in 1957

Trivia: In what year was I born?
CSE401 Au08 2

A world with no compilers

CSE401 Au08 3

Assembly/machine language coding

• …is slow, error-prone, tedious, not portable, …

• The size (roughly, lines of code) of a high-level

language program relative to its assembly language

equivalent is approximately linear – but that may well

be a factor of 10 or even 100

– Microsoft Vista is something like 50 million lines of

source code (50 MLOC)

• Printed double-sided something like triple the

height of the Allen Center

• Something like 20 person-years just to retype

• Q: Why is harder to build a program 10 times larger?

CSE401 Au08 4

9/26/2008

2

Ergo: we need compilers

• And to have compilers, somebody has to build

compilers

– At least every time there is a need to program in a

new <programming language, architecture> pair

– Roughly how many pl’s and how many ISA’s?

Cross product?

• Unless the compilers could be generated

automatically – and parts can (a bit more on this later

in the course)

Trivia: In what year did I first write a program?

In what language? On what architecture?
CSE401 Au08 5

But why might you care?

• Crass reasons: jobs

• Class reasons: grade in 401

• Cool reasons: loveliest blending of theory and practice in

computer science & engineering

• Cruel reasons: we all had to learn it

• Practice reasons: more experience with software design,

modifying software written by others, etc.

• Practical reasons: the techniques are widely used outside of

conventional compilers

• Super-practical reasons: lays foundation for understanding or

even researching really cool stuff like JIT (just-in-time)

compilers, compiling for multicore, building interpreters, scripting

languages, (de)serializing data for distribution, and more…

CSE401 Au08 6

Better understand…

• Compile-time vs. run-time

• Interactions among

– language features

– implementation efficiency

– compiler complexity

– architectural features

CSE401 Au08 7

Compiling (or related) Turing Awards

• 1966 Alan Perlis

• 1972 Edsger Dijkstra

• 1976 Michael Rabin

and Dana Scott

• 1977 John Backus

• 1978 Bob Floyd

• 1979 Bob Iverson

• 1980 Tony Hoare

• 1984 Niklaus Wirth

• 1987 John Cocke

• 2001 Ole-Johan Dahl

and Kristen Nygaard

• 2003 Alan Kay

• 2005 Peter Naur

• 2006 Fran Allen

CSE401 Au08 8

9/26/2008

3

Questions?

CSE401 Au08 9

Administrivia: see web

• Text: Engineering a Compiler, Cooper and Torczon,

Morgan-Kaufmann 2004

• Mail list – automatically subscribed

• Google calendar with links

• Grading

– Project 40%

– Homework 15%

– Midterm 15%

– Final 25%

– Other (class participation, extra credit, etc.) 5%

CSE401 Au08 10

Project

• Start with a MiniJava compiler in Java

• Add features such as comments, floating-point,

arrays, class variables, for loops, etc.

• Completed in stages over the term

• Not teams: but you can talk to each other (“Prison

Break” rule, see web) for the project

• Grading basis: correctness, clarity of design and

implementation, quality of test cases, etc.

CSE401 Au08 11

Compiler structure: overview

Source

Program
Target

Program
Compiler

Generate

(back end)

Analyze

(front end)

Intermediate

Representation

Lexical &

Syntactic &

Semantic

Intermediate Code Generation &

Optimization &

Code Generation

CSE401 Au08 12

9/26/2008

4

Lexical analysis (scanning, lexing)

Source

Program
Analyze:

scan; parse

Intermediate

Representation

t 6 : =

Fac . Comput eFac (t h i s , t 3) ;

Scan

(lexical analysis)

Token Stream

Character Stream
28 characters not counting

whitespace

name=t6,assign,name=Fac,period,

name=ComputeFac,lparen,name=this,

comma,name=t3,rparen,semicolon

(11 tokens)

CSE401 Au08 13

Syntactic analysis

name=t6,assign,name=Fac,period,

name=ComputeFac,lparen,name=this,

comma,name=t3,rparen,semicolon

Assignment
statement

Lefthand
side

Identifier:
t6

Righthand
side

Method
invocation

Method name

QualifiedName

Identifier:
Fac

Identifer:
ComputeFac

Parameter List

Identifier:
this

Identifier:
t3

Analyze:

scan; parse

Abstract

syntax tree

CSE401 Au08 14

Assign…
statement

Lefthand
side

Identifier
: t6

Righthand
side

Method
invocation

Method name

Qualified…

Identifier:
Fac

Identifer:
ComputeFac

Parameter List

Identifier:
this

Identifier
: t3

Semantic analysis

• Annotate abstract

syntax tree

• Primarily determine

which identifiers

are associated with

which declarations

• Scoping is key

issue

• Symbol table is key

data structure

CSE401 Au08 15

Code generation (backend)

Target

Program

Generate

(back end)

Annotated abstract

syntax tree

Intermediate

Language

Intermediate

code

generation

Annotated abstract

syntax tree

Target code

generation

Target

Program

CSE401 Au08 16

9/26/2008

5

Optimization

• Takes place at various (and multiple) places during

code generation

– Might optimize the intermediate language code

– Might optimize the target code

– Might optimize during execution of the program

• Q: Is it better to have an optimizing compiler or to

hand-optimize code?

CSE401 Au08 17

Quotations about optimization

• Michael Jackson

– Rule 1: Don't do it.

– Rule 2 (for experts only): Don't do it yet.

• Bill Wulf

– More computing sins are committed in the name of

efficiency (without necessarily achieving it) than for

any other single reason – including blind stupidity.

• Don Knuth

– We should forget about small efficiencies, say about

97% of the time: premature optimization is the root

of all evil.

CSE401 Au08 18

Questions?

CSE401 Au08 19

Lexing: reprise

• Read in characters

• Clump into tokens

• Strip out whitespace and comments

• Tokens are specified using regular expressions
Ident ::= Letter AlphaNum*

Integer ::= Digit+

AlphaNum ::= Letter | Digit

Letter ::= 'a' | … | 'z' | 'A' | … | 'Z'

Digit ::= '0' | … | '9'

• Q: regular expressions are equivalent to something

you’ve previously learned about… what is it?

CSE401 Au08 20

9/26/2008

6

Syntactic analysis: reprise

• Read in tokens

• Build a tree based on syntactic structure

• Report any syntax errors

• EBNF (extended Backus-Naur Form) is a common notation for

defining programming language syntax as a context-free

grammar
Stmt ::= if (Expr) Stmt [else Stmt]

| while (Expr) Stmt | ID = Expr; | …

Expr ::= Expr + Expr | Expr < Expr | … | ! Expr

| Expr . ID ([Expr {,Expr}])

| ID | Integer | (Expr) | …

• The grammar specifies the concrete syntax of language

• The parser constructs the abstract syntax tree

CSE401 Au08 21

Semantic analysis: reprise

• Do name resolution and type checking on the abstract syntax

tree

– What declaration does each name refer to?

– Are types consistent? Are other static properties consistent?

• Symbol table

– maps names to information about name derived from

declaration

– represents scoping usually through a tree of per-scope

symbol tables

• Overall process

1. Process each scope top down

2. Process declarations in each scope into symbol table

3. Process body of each scope in context of symbol table

CSE401 Au08 22

Intermediate code generation: reprise

• Translate annotated AST and symbol tables into

lower-level intermediate code

• Intermediate code is a separate language

– Source-language independent

– Target-machine independent

• Intermediate code is simple and regular

– Good representation for doing optimizations

– Might be a reasonable target language itself, e.g.

Java bytecode

CSE401 Au08 23

Target code generation: reprise

• Instruction selection: choose target instructions for

(subsequences) of intermediate representation (IR)

instructions

• Register allocation: allocate IR code variables to

registers, spilling to memory when necessary

• Compute layout of each procedures stack frames and

other runtime data structures

• Emit target code

CSE401 Au08 24

9/26/2008

7

Example: source

Sample (extended) MiniJava program: Factorial.java

// Computes 10! and prints it out

class Factorial {

public static void main(String[] a) {

System.out.println(

new Fac().ComputeFac(10));

}

}

class Fac {

// the recursive helper function

public int ComputeFac(int num) {

int numAux;

if (num < 1)

numAux = 1;

else numAux = num * this.ComputeFac(num-1);

return numAux;

}

}

CSE401 Au08 25

Example: intermediate representation

Int Fac.ComputeFac(*? this, int num) {

int t1, numAux, t8, t3, t7, t2, t6, t0;

t0 := 1;

t1 := num < t0;

ifnonzero t1 goto L0;

t2 := 1;

t3 := num - t2;

t6 := Fac.ComputeFac(this, t3);

t7 := num * t6;

numAux := t7;

goto L2;

label L0;

t8 := 1;

numAux := t8

label L2;

return numAux

}
CSE401 Au08 26

Questions?

CSE401 Au08 27

Don’t forget

• Survey (before Friday)

• Readings (on calendar)

• Visit office hours (on calendar)

• Ask questions

CSE401 Au08 28

