
9/26/2008

1

Introduction to Compiler Construction

David Notkin

Autumn 2008

Source

Program
[Higher-Level

Programming

Language]

Compiler

Target

Program
[Lower-Level

Language/

Architecture]

C
S

E
4

0
1

“Compiler”: from the web

• The Oxford English Dictionary (OED) indicates that the first 

usage of the term is circa 1330, referring to one who collects 

and puts together materials

– They also note a usage “Diuerse translatours and 

compilaris” from Scotland in 1549

• Most dictionaries give the above definition as well as the 

computing-based definition (which the OED dates to 1953)

– A program that translates programs written in a high-level 

programming language into equivalent programs in a lower-

level language

• Wikipedia credits Grace Hopper with the first compiler (for a 

language called A-0) in 1952, and John Backus’ IBM team with 

the first complete compiler (for FORTRAN) in 1957

Trivia: In what year was I born?
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A world with no compilers
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Assembly/machine language coding

• …is slow, error-prone, tedious, not portable, …

• The size (roughly, lines of code) of a high-level 

language program relative to its assembly language 

equivalent is approximately linear – but that may well 

be a factor of 10 or even 100

– Microsoft Vista is something like 50 million lines of 

source code (50 MLOC)

• Printed double-sided something like triple the 

height of the Allen Center

• Something like 20 person-years just to retype

• Q: Why is harder to build a program 10 times larger?
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Ergo: we need compilers

• And to have compilers, somebody has to build 

compilers

– At least every time there is a need to program in a 

new <programming language, architecture> pair

– Roughly how many pl’s and how many ISA’s?  

Cross product?

• Unless the compilers could be generated 

automatically – and parts can (a bit more on this later 

in the course)

Trivia: In what year did I first write a program?

In what language?  On what architecture?
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But why might you care?

• Crass reasons: jobs

• Class reasons: grade in 401

• Cool reasons: loveliest blending of theory and practice in 

computer science & engineering

• Cruel reasons: we all had to learn it 

• Practice reasons: more experience with software design, 

modifying software written by others, etc.

• Practical reasons: the techniques are widely used outside of 

conventional compilers

• Super-practical reasons: lays foundation for understanding or 

even researching really cool stuff like JIT (just-in-time) 

compilers, compiling for multicore, building interpreters, scripting 

languages, (de)serializing data for distribution, and more…
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Better understand…

• Compile-time vs. run-time

• Interactions among

– language features

– implementation efficiency

– compiler complexity

– architectural features
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Compiling (or related) Turing Awards

• 1966 Alan Perlis

• 1972 Edsger Dijkstra

• 1976 Michael Rabin 

and Dana Scott

• 1977 John Backus

• 1978 Bob Floyd

• 1979 Bob Iverson

• 1980 Tony Hoare

• 1984 Niklaus Wirth

• 1987 John Cocke

• 2001 Ole-Johan Dahl 

and Kristen Nygaard

• 2003 Alan Kay

• 2005 Peter Naur

• 2006 Fran Allen
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Questions?
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Administrivia: see web

• Text: Engineering a Compiler, Cooper and Torczon, 

Morgan-Kaufmann 2004

• Mail list – automatically subscribed

• Google calendar with links

• Grading

– Project 40%

– Homework 15%

– Midterm 15%

– Final 25%

– Other (class participation, extra credit, etc.) 5%
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Project

• Start with a MiniJava compiler in Java

• Add features such as comments, floating-point, 

arrays, class variables, for loops, etc.

• Completed in stages over the term

• Not teams: but you can talk to each other (“Prison 

Break” rule, see web) for the project

• Grading basis: correctness, clarity of design and 

implementation, quality of test cases, etc.
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Compiler structure: overview
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Lexical analysis (scanning, lexing)

Source

Program
Analyze:

scan; parse

Intermediate

Representation

t 6  : =

Fac . Comput eFac ( t h i s ,  t 3) ;

Scan

(lexical analysis)

Token Stream

Character Stream
28 characters not counting

whitespace

name=t6,assign,name=Fac,period,

name=ComputeFac,lparen,name=this,

comma,name=t3,rparen,semicolon

(11 tokens)
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Syntactic analysis

name=t6,assign,name=Fac,period,

name=ComputeFac,lparen,name=this,

comma,name=t3,rparen,semicolon

Assignment 
statement

Lefthand
side

Identifier: 
t6

Righthand
side

Method 
invocation

Method name

QualifiedName

Identifier:
Fac

Identifer: 
ComputeFac

Parameter List

Identifier: 
this

Identifier: 
t3

Analyze:

scan; parse

Abstract

syntax tree
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Assign… 
statement

Lefthand
side

Identifier
: t6

Righthand
side

Method 
invocation

Method name

Qualified…

Identifier:
Fac

Identifer: 
ComputeFac

Parameter List

Identifier: 
this

Identifier
: t3

Semantic analysis

• Annotate abstract 

syntax tree

• Primarily determine 

which identifiers 

are associated with 

which declarations

• Scoping is key 

issue

• Symbol table is key 

data structure
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Code generation (backend)

Target

Program
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Intermediate
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Optimization

• Takes place at various (and multiple) places during 

code generation

– Might optimize the intermediate language code

– Might optimize the target code

– Might optimize during execution of the program

• Q: Is it better to have an optimizing compiler or to 

hand-optimize code?
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Quotations about optimization

• Michael Jackson

– Rule 1: Don't do it.

– Rule 2 (for experts only): Don't do it yet.

• Bill Wulf

– More computing sins are committed in the name of 

efficiency (without necessarily achieving it) than for 

any other single reason – including blind stupidity.

• Don Knuth

– We should forget about small efficiencies, say about 

97% of the time: premature optimization is the root 

of all evil.
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Questions?
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Lexing: reprise

• Read in characters

• Clump into tokens

• Strip out whitespace and comments

• Tokens are specified using regular expressions
Ident ::= Letter AlphaNum* 

Integer ::= Digit+ 

AlphaNum ::= Letter | Digit 

Letter ::= 'a' | … | 'z' | 'A' | … | 'Z' 

Digit ::= '0' | … | '9'

• Q: regular expressions are equivalent to something 

you’ve previously learned about… what is it?
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Syntactic analysis: reprise

• Read in tokens

• Build a tree based on syntactic structure 

• Report any syntax errors

• EBNF (extended Backus-Naur Form) is a common notation for 

defining programming language syntax as a context-free 

grammar
Stmt ::= if (Expr) Stmt [else Stmt] 

| while (Expr) Stmt | ID = Expr; | … 

Expr ::= Expr + Expr | Expr < Expr | … | ! Expr 

| Expr . ID ([Expr {,Expr}]) 

| ID | Integer | (Expr) | … 

• The grammar specifies the concrete syntax of language

• The parser constructs the abstract syntax tree
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Semantic analysis: reprise

• Do name resolution and type checking on the abstract syntax 

tree

– What declaration does each name refer to? 

– Are types consistent?  Are other static properties consistent? 

• Symbol table

– maps names to information about name derived from 

declaration 

– represents scoping usually through a tree of per-scope 

symbol tables

• Overall process

1. Process each scope top down 

2. Process declarations in each scope into symbol table

3. Process body of each scope in context of symbol table 
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Intermediate code generation: reprise

• Translate annotated AST and symbol tables into 

lower-level intermediate code

• Intermediate code is a separate language

– Source-language independent

– Target-machine independent

• Intermediate code is simple and regular

– Good representation for doing optimizations

– Might be a reasonable target language itself, e.g. 

Java bytecode
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Target code generation: reprise

• Instruction selection: choose target instructions for 

(subsequences) of intermediate representation (IR) 

instructions

• Register allocation: allocate IR code variables to 

registers, spilling to memory when necessary

• Compute layout of each procedures stack frames and 

other runtime data structures

• Emit target code
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Example: source

Sample (extended) MiniJava program: Factorial.java 

// Computes 10! and prints it out 

class Factorial { 

public static void main(String[] a) { 

System.out.println( 

new Fac().ComputeFac(10));     

} 

} 

class Fac { 

// the recursive helper function 

public int ComputeFac(int num) { 

int numAux; 

if (num < 1) 

numAux = 1; 

else numAux = num * this.ComputeFac(num-1);

return numAux; 

} 

}
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Example: intermediate representation

Int Fac.ComputeFac(*? this, int num) {

int t1, numAux, t8, t3, t7, t2, t6, t0;

t0 := 1;

t1 := num < t0;

ifnonzero t1 goto L0;

t2 := 1;

t3 := num - t2;

t6 := Fac.ComputeFac(this, t3);

t7 := num * t6;

numAux := t7;

goto L2;

label L0;

t8 := 1;

numAux := t8

label L2;

return numAux

}
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Questions?

CSE401 Au08 27

Don’t forget

• Survey (before Friday)

• Readings (on calendar)

• Visit office hours (on calendar)

• Ask questions
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